Buch, Englisch, 344 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 540 g
Reihe: Universitext
Buch, Englisch, 344 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 540 g
Reihe: Universitext
ISBN: 978-3-540-15293-4
Verlag: Springer Berlin Heidelberg
This (post) graduate text gives a broad introduction to Lie groups and algebras with an emphasis on differential geometrical methods. It analyzes the structure of compact Lie groups in terms of the action of the group on itself by conjugation, culminating in the classification of the representations of compact Lie groups and their realization as sections of holomorphic line bundles over flag manifolds. Appendices provide background reviews.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1. Lie Groups and Lie Algebras.- 1.1 Lie Groups and their Lie Algebras.- 1.2 Examples.- 1.3 The Exponential Map.- 1.4 The Exponential Map for a Vector Space.- 1.5 The Tangent Map of Exp.- 1.6 The Product in Logarithmic Coordinates.- 1.7 Dynkin’s Formula.- 1.8 Lie’s Fundamental Theorems.- 1.9 The Component of the Identity.- 1.10 Lie Subgroups and Homomorphisms.- 1.11 Quotients.- 1.12 Connected Commutative Lie Groups.- 1.13 Simply Connected Lie Groups.- 1.14 Lie’s Third Fundamental Theorem in Global Form.- 1.15 Exercises.- 1.16 Notes.- 2. Proper Actions.- 2.1 Review.- 2.2 Bochner’s Linearization Theorem.- 2.3 Slices.- 2.4 Associated Fiber Bundles.- 2.5 Smooth Functions on the Orbit Space.- 2.6 Orbit Types and Local Action Types.- 2.7 The Stratification by Orbit Types.- 2.8 Principal and Regular Orbits.- 2.9 Blowing Up.- 2.10 Exercises.- 2.11 Notes.- 3. Compact Lie Groups.- 3.0 Introduction.- 3.1 Centralizers.- 3.2 The Adjoint Action.- 3.3 Connectedness of Centralizers.- 3.4 The Group of Rotations and its Covering Group.- 3.5 Roots and Root Spaces.- 3.6 Compact Lie Algebras.- 3.7 Maximal Tori.- 3.8 Orbit Structure in the Lie Algebra.- 3.9 The Fundamental Group.- 3.10 The Weyl Group as a Reflection Group.- 3.11 The Stiefel Diagram.- 3.12 Unitary Groups.- 3.13 Integration.- 3.14 The Weyl Integration Theorem.- 3.15 Nonconnected Groups.- 3.16 Exercises.- 3.17 Notes.- 4. Representations of Compact Groups.- 4.0 Introduction.- 4.1 Schur’s Lemma.- 4.2 Averaging.- 4.3 Matrix Coefficients and Characters.- 4.4 G-types.- 4.5 Finite Groups.- 4.6 The Peter-Weyl Theorem.- 4.7 Induced Representations.- 4.8 Reality.- 4.9 Weyl's Character Formula.- 4.10 Weight Exercises.- 4.11 Highest Weight Vectors.- 4.12 The Borel-Weil Theorem.- 4.13 The Nonconnected Case.- 4.14 Exercises.- 4.15Notes.- References for Chapter Four.- Appendices and Index.- A Appendix: Some Notions from Differential Geometry.- B Appendix: Ordinary Differential Equations.- References for Appendix.




