E-Book, Englisch, Band 26, 529 Seiten
Reihe: Challenges and Advances in Computational Chemistry and Physics
Kolezynski / Kolezynski / Król Molecular Spectroscopy-Experiment and Theory
1. Auflage 2018
ISBN: 978-3-030-01355-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
From Molecules to Functional Materials
E-Book, Englisch, Band 26, 529 Seiten
Reihe: Challenges and Advances in Computational Chemistry and Physics
ISBN: 978-3-030-01355-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book reviews various aspects of molecular spectroscopy and its application in materials science, chemistry, physics, medicine, the arts and the earth sciences. Written by an international group of recognized experts, it examines how complementary applications of diverse spectroscopic methods can be used to study the structure and properties of different materials. The chapters cover the whole spectrum of topics related to theoretical and computational methods, as well as the practical application of spectroscopic techniques to study the structure and dynamics of molecular systems, solid-state crystalline and amorphous materials, surfaces and interfaces, and biological systems. As such, the book offers an invaluable resource for all researchers and postgraduate students interested in the latest developments in the theory, experimentation, measurement and application of various advanced spectroscopic methods for the study of materials.
Andrzej Kolezynski is an Associate Professor of Chemistry at AGH University of Science and Technology in Krakow, Poland and has also a PhD in philosophy. In his research, he applies methods of computational chemistry and physics to the periodic and non-periodic solids in order to analyse electronic structure, transport properties and electron density topological properties in relation to structure, chemical bonding and other physical and chemical properties of the compounds of interest. In addition to his research activities, he was a guest editor of several special issues in the Journal of Molecular Structure (2013, 2017), Spectrochimica Acta A (2017) and Vibrational Spectroscopy (2017), a chairman of the organising committees of two international conferences on molecular spectroscopy and served as a member and chair of the expert panels assessing grant applications for two main Polish funding agencies, the National Science Centre and National Centre for Research and Development. Dr. Kolezynski has published more than 40 research papers in international refereed journals and authored a monograph and two book chapters.Magdalena Król is an Assistant Professor at AGH University of Science and Technology. She received her master's degree in Chemical Technology and PhD in Chemistry from the same university. In her research, she applies various spectroscopic methods to study the structure and properties of aluminosilicate materials, with particular emphasis on materials from the zeolites group. In addition to her research activities, she was a guest editor of the special issue in Vibrational Spectroscopy (2017). Dr. Król is a co-author of over 50 articles (including over 30 papers in international refereed journals) and 5 book chapters.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;Contributors;10
4;1 Computational Methods in Spectroscopy;13
4.1;Abstract;13
4.2;1.1 Introduction;13
4.3;1.2 Theoretical Foundations for Modeling of Real Systems and Processes Studied by Spectroscopic Methods;17
4.3.1;1.2.1 Ab Initio Methods;18
4.3.1.1;1.2.1.1 Schrödinger Equation;18
4.3.1.2;1.2.1.2 Born–Oppenheimer Approximation, Potential Energy Hypersurface;20
4.3.1.3;1.2.1.3 Hartree–Fock Method and Post-HF Extensions;22
4.3.1.4;1.2.1.4 Density Functional Theory;26
4.3.2;1.2.2 Practical Aspects of the Application of Computational Methods in Spectroscopy;34
4.3.2.1;1.2.2.1 Harmonic Approximation—Vibrational Spectroscopy;34
4.3.2.2;1.2.2.2 Time-Dependent DFT;38
4.4;1.3 The Problem of Computational Complexity and the Resulting Necessary Simplifications and Approximations;43
4.4.1;1.3.1 The Size and Complexity of the System;44
4.4.1.1;1.3.1.1 Size of the System: Molecules, Clusters, Amorphous and Periodic Solids;45
4.4.1.2;1.3.1.2 Structure Disorder: Point Defects, Dopants, Vacancies;49
4.4.2;1.3.2 Model Structure Simplifications and Approximations (Theory Level);52
4.5;1.4 Conclusions;53
4.6;References;54
5;2 Scaling Procedures in Vibrational Spectroscopy;61
5.1;Abstract;61
5.2;2.1 Introduction;63
5.3;2.2 Fundamentals;64
5.3.1;2.2.1 Potential Energy Surface;64
5.3.2;2.2.2 One Dimensional Vibrational Problem;66
5.3.3;2.2.3 Wilson–Decius–Cross Method;71
5.4;2.3 Scaling Procedures;74
5.4.1;2.3.1 General Strategy;76
5.4.2;2.3.2 Uniform Scaling;77
5.4.2.1;2.3.2.1 Fundamentals of the Method;77
5.4.2.2;2.3.2.2 Development of US;80
5.4.3;2.3.3 Wavenumber Linear Scaling;84
5.4.4;2.3.4 Scaled Quantum Mechanical Force Field Method;85
5.4.4.1;2.3.4.1 Fundamentals of the Method;85
5.4.4.2;2.3.4.2 Development of SQM;87
5.4.5;2.3.5 Effective Scaling Frequency Factor Method;93
5.4.5.1;2.3.5.1 Fundamentals of the Method;93
5.4.5.2;2.3.5.2 Development of ESFF;96
5.4.6;2.3.6 Comparison of Multi-parameter Scaling Procedures;101
5.4.6.1;2.3.6.1 Quality of the Scaled Frequencies;101
5.4.6.2;2.3.6.2 Numerical Stability;102
5.4.6.3;2.3.6.3 Possible Future Applications;102
5.5;References;103
6;3 Quantum Dot and Fullerene with Organic Chromophores as Electron-Donor-Acceptor Systems;108
6.1;Abstract;108
6.2;3.1 Introduction;109
6.3;3.2 Brief History of Photocells Based on Organic Materials;110
6.4;3.3 Porphyrins and Phthalocyanies;111
6.5;3.4 Phthalocyanine and Porphyrin with Quantum Dots;114
6.6;3.5 Corroles and Fullerene;117
6.7;3.6 Energy and Electron Transfer;121
6.8;3.7 Summarizing;127
6.9;Acknowledgements;128
6.10;References;128
7;4 Material Analysis Using Raman Spectroscopy;134
7.1;Abstract;134
7.2;4.1 Introduction;135
7.3;4.2 Experimental;137
7.4;4.3 Results and Discussion;138
7.5;4.4 Calculation of Young’s Modulus;145
7.6;4.5 Conclusions;146
7.7;Acknowledgements;146
7.8;References;146
8;5 Ligand-Core NLO-Phores;149
8.1;Abstract;149
8.2;5.1 Introduction;149
8.3;5.2 Atomically Precise Clusters of Gold and Silver: Synthesis, Characterization, and Optical Properties;151
8.3.1;5.2.1 Atomically Precise Clusters of Gold and Silver;151
8.3.2;5.2.2 Atomically Precise Clusters of Gold and Silver—Synthetic Routes;154
8.3.3;5.2.3 Atomically Precise Clusters of Gold and Silver—Optical Properties;155
8.4;5.3 Atomically Precise Clusters of Gold and Silver as New NLO Chromophores—Background and Design;156
8.5;5.4 Measurement Techniques of Optical Nonlinearities—Two-Photon Absorption/Fluorescence;160
8.6;5.5 Case Studies;162
8.6.1;5.5.1 NLO Emission of Ag29(DHLA)12—Playing with Photons and Colors;162
8.6.2;5.5.2 Bulky Counter-Ions—a Simple Route to Enhance the TPEF Efficiencies;164
8.7;5.6 Conclusions and Outlooks;165
8.8;Acknowledgements;166
8.9;References;166
9;6 Small and Large Molecules Investigated by Raman Spectroscopy;171
9.1;Abstract;171
9.2;6.1 Molecules of Biomedical Importance—Structure and Interactions;171
9.2.1;6.1.1 The Basis of the Raman Optical Activity (ROA);172
9.2.2;6.1.2 ROA Research on Chiral Compounds and Its Applications, Now and Over the Years;173
9.2.3;6.1.3 Sophisticated Applications of the ROA Techniques;175
9.2.4;6.1.4 The Basis of Surface-Enhanced Raman Spectroscopy (SERS);176
9.2.5;6.1.5 Applications of SERS in Structural Studies—A Case of Pharmaceuticals;178
9.3;6.2 Application of Raman Spectroscopy to In Vitro Endothelial Cell Cultures;180
9.3.1;6.2.1 Characteristics of Endothelial Cell Cultures;181
9.3.2;6.2.2 In Vitro Cell Models of Pathophysiology of the Endothelium;182
9.3.3;6.2.3 In Vitro Cell Models in Drug Screening;186
9.3.4;6.2.4 Probing of Intracellular Environment by SERS Imaging;187
9.4;6.3 Examination of Primary and Cultured Cells;189
9.4.1;6.3.1 Liver Sinusoidal Endothelial Cells (LSECs);190
9.4.2;6.3.2 Cardiac Microvascular Endothelial Cells (CMECs);190
9.5;6.4 Label-Free and Label Raman Spectroscopic Imaging as a Potential Tool for Diagnosis of Diseases of Affluence in Tissues;193
9.5.1;6.4.1 Label-Free Raman Spectroscopic Imaging;193
9.5.2;6.4.2 Tissue Imaging With Immuno-SERS Microscopy;196
9.6;References;198
10;7 Hydantoins and Mercaptoimidazoles: Vibrational Spectroscopy as a Probe of Structure and Reactivity in Different Environments, from the Isolated Molecule to Polymorphs;209
10.1;Abstract;209
10.2;7.1 Introduction;209
10.3;7.2 Structures and Infrared Spectra of the Isolated Molecules;211
10.3.1;7.2.1 Mercaptoimidazoles;211
10.3.2;7.2.2 Hydantoins;215
10.4;7.3 Photochemistry for the Matrix-Isolated Molecules;218
10.4.1;7.3.1 Mercaptoimidazoles;218
10.4.2;7.3.2 Hydantoins;221
10.5;7.4 Neat Condensed Phases—Polymorphism and Phase Transitions;222
10.5.1;7.4.1 Mercaptoimidazoles: The Case of the Thioimidazole Dimer;222
10.5.2;7.4.2 Hydantoins: Polymorphism in 1MH and 5MH;225
10.5.3;7.4.3 Hydantoins: The Unusual Conformational Selection in AAH upon Crystallization;228
10.6;7.5 Conclusion;229
10.7;Acknowledgements;230
10.8;References;230
11;8 Vibrational Spectroscopy in Analysis of Stimuli-Responsive Polymer–Water Systems;233
11.1;Abstract;233
11.2;8.1 Stimuli-Responsive Polymer Systems;233
11.3;8.2 Water and Polymer–Water Systems as Seen by Vibrational Spectroscopy;238
11.4;8.3 pH-Sensitive Systems—Polyelectrolytes;245
11.5;8.4 Thermo-Responsive Systems—“Non-Ionisable” Polymers;249
11.6;8.5 Computer Simulations of Thermo-Responsive Polymer–Water Systems;255
11.7;8.6 Outlooks and Perspectives;267
11.8;Acknowledgements;270
11.9;References;271
12;9 Mössbauer Spectroscopy of Magnetoelectric Perovskite Oxides;282
12.1;Abstract;282
12.2;9.1 Introduction;282
12.3;9.2 Mössbauer Spectroscopy;283
12.3.1;9.2.1 Hyperfine Interactions;285
12.3.1.1;9.2.1.1 Isomer Shift;285
12.3.1.2;9.2.1.2 Magnetic Hyperfine Field (Nuclear Zeeman Splitting);287
12.3.1.3;9.2.1.3 Quadrupole Splitting;288
12.3.1.4;9.2.1.4 Calculation of the Hyperfine Interaction Parameters;289
12.4;9.3 Magnetoelectrics;292
12.4.1;9.3.1 ABO3 Perovskites;294
12.4.1.1;9.3.1.1 BiFeO3;295
12.4.1.2;9.3.1.2 Pb(Fe0.5Nb0.5)O3;298
12.4.1.3;9.3.1.3 Bi0.5Pb0.5(Fe0.75Nb0.25)O3;299
12.4.1.3.1;B-Site Disorder;300
12.4.1.3.2;Magnetic Ordering Temperature;302
12.4.1.3.3;Iron Magnetic Moments;303
12.5;9.4 Conclusions;305
12.6;References;306
13;10 Vibrational Spectroscopy of Zeolites;310
13.1;Abstract;310
13.2;10.1 Introduction;310
13.3;10.2 Systematics of Zeolite-Type Crystals;311
13.4;10.3 Application of QM Methods in Interpretation of Zeolite Spectra;312
13.5;10.4 Vibrational Spectra of Silicates;314
13.6;10.5 Spectrum Analysis Based on the SBUs;316
13.6.1;10.5.1 SBU Terminated by Protons (Dependence of Framework Type on Characteristic Vibration Modes);317
13.6.2;10.5.2 Influence of Tetrahedral Substitution on the Spectra Envelope;318
13.6.3;10.5.3 SBU Terminated by Cations;321
13.6.4;10.5.4 Factors Affecting the Position of RO Vibration Band;323
13.7;10.6 SBU Versus Periodic Structure;323
13.8;10.7 Influence of Extra-Framework Ions on Vibrational Spectra;328
13.8.1;10.7.1 Ion Exchange Versus Spectrum;328
13.8.2;10.7.2 Anions in the Structure of Zeolites;335
13.9;10.8 Conclusions;336
13.10;Acknowledgements;337
13.11;References;338
14;11 In Situ and Operando Techniques in Catalyst Characterisation and Design;342
14.1;Abstract;342
14.2;11.1 Introduction;343
14.3;11.2 Methods for Real-Time Catalyst Investigation;345
14.3.1;11.2.1 Determination of Active Centres Using Probe Molecules;345
14.3.2;11.2.2 in Situ FTIR Spectroscopy;349
14.3.2.1;11.2.2.1 Enhanced in Situ FTIR Techniques;353
14.3.2.2;11.2.2.2 2D Correlation Spectroscopy;354
14.3.3;11.2.3 in Situ Raman Spectroscopy;355
14.3.4;11.2.4 In Situ UV-Vis Spectroscopy;358
14.4;11.3 New Trends in in Situ Investigation of Catalysts;359
14.4.1;11.3.1 Conjugated AFM/Raman Spectroscopy;359
14.5;11.4 Summary;361
14.6;Acknowledgements;363
14.7;References;363
15;12 Application of Spectroscopic Methods in the Studies of Polysiloxanes, Cubic Oligomeric Silsesquioxanes, and Spherosilicates Modified by Organic Functional Groups via Hydrosilylation;369
15.1;Abstract;369
15.2;12.1 Introduction;369
15.3;12.2 Hydrosilylation Process;371
15.4;12.3 Spectroscopic Methods Applied in the Studies of Polysiloxanes, Oligomeric Silsesquioxanes, and Spherosilicates Modified by Hydrosilylation;372
15.5;12.4 Polysiloxanes Modified by Organic Functional Groups;373
15.5.1;12.4.1 Modified Polyvinylsiloxanes;374
15.5.2;12.4.2 Modified PHMS and PHMS-DMS Copolymers;375
15.5.2.1;12.4.2.1 Polymers with Epoxy Side Groups;377
15.5.2.2;12.4.2.2 Polymers with Ester, Polyether, and Other Oxygen-Containing Side Groups;379
15.5.2.3;12.4.2.3 Polymers with Fluoroalkyl and Other Fluorine-Containing Side Groups;384
15.5.2.4;12.4.2.4 Polymers with Nitrogen-Containing Side Groups;387
15.6;12.5 Organofunctional Cubic Oligomeric Silsesquioxanes and Spherosilicates;391
15.6.1;12.5.1 {{\hbox{T}}_{8}}^{{\rm H}} and {\hbox{Q}}_{8} {{\hbox{M}}_{8}}^{{\rm H}} Modified by Epoxy Groups;392
15.6.2;12.5.2 {{\hbox{T}}_{8}}^{{\rm H}} and {\hbox{Q}}_{8} {{\hbox{M}}_{8}}^{{\rm H}} Modified by Other Oxygen-Containing Groups;396
15.6.3;12.5.3 {{\hbox{T}}_{8}}^{{\rm H}} and {\hbox{Q}}_{8} {{\hbox{M}}_{8}}^{{\rm H}} Modified by Fluorocarbon Groups;398
15.6.4;12.5.4 {{\hbox{T}}_{8}}^{{\rm H}} and {\hbox{Q}}_{8} {{\hbox{M}}_{8}}^{{\rm H}} Modified by Nitrogen-Containing Groups;399
15.7;12.6 Conclusions;401
15.8;References;402
16;13 Spectroscopic Aspects of Polydimethylsiloxane (PDMS) Used for Optical Waveguides;409
16.1;Abstract;409
16.2;13.1 Introduction;409
16.3;13.2 Experiment;411
16.3.1;13.2.1 Polymer Sample Preparation;411
16.3.2;13.2.2 Waveguide Fabrication;411
16.3.3;13.2.3 Optical Measurements;413
16.4;13.3 Characterization of the Optical PDMS Materials;414
16.4.1;13.3.1 Refractive Index and Bandwidth;414
16.4.2;13.3.2 Optical Loss Phenomena;417
16.4.2.1;13.3.2.1 Intrinsic Absorption Loss by Electronic Transitions;418
16.4.2.2;13.3.2.2 Intrinsic Absorption Loss by Molecular Vibrations;419
16.4.2.3;13.3.2.3 Assignment and Wavenumber Calculation of Vibrational PDMS Bands;419
16.4.2.4;13.3.2.4 Absorption Loss for PDMS Core and Cladding due to Molecular Vibrations;421
16.4.2.5;13.3.2.5 Estimation of Absorption Loss for PDMS Derivatives;424
16.4.2.6;13.3.2.6 Intrinsic Scattering Loss;426
16.4.2.7;13.3.2.7 Scattering Loss from Mould Roughness;427
16.4.2.8;13.3.2.8 Optical Loss Due to Interlayer;428
16.4.3;13.3.3 Optical Insertion Loss of PDMS Waveguides after Fabrication and Ageing;429
16.5;13.4 Conclusions;431
16.6;Acknowledgements;432
16.7;References;432
17;14 The Luminescent Properties of Photonic Glasses and Optical Fibers;434
17.1;Abstract;434
17.2;14.1 Introduction;434
17.3;14.2 The Effect of the Structure of Antimony-Germanate Glasses Modification on the Luminescent Properties;437
17.4;14.3 Plasmon Effect in Antimony-Germanate Glasses;441
17.5;14.4 Upconversion Luminescence in the Vis Range of Optical Fibers from Low-Phonon Energy Glasses;450
17.6;14.5 Optical Fibers from GeO2–Ga2O3–BaO System;457
17.7;14.6 Summary;460
17.8;Acknowledgements;461
17.9;References;461
18;15 Spectroscopic Characterization of Silicate Amorphous Materials;464
18.1;Abstract;464
18.2;15.1 Glassy State Theory;464
18.3;15.2 Vibrational Spectroscopy as a Tool to Study of Disordered Structure;470
18.3.1;15.2.1 Decomposition of IR Spectra of Glasses;471
18.4;15.3 Glass Structure in the Light of Spectroscopic Studies;474
18.4.1;15.3.1 Model Silica Glass;474
18.4.2;15.3.2 The Influence of Cationic Substitutions on Glass Structure;479
18.5;15.4 Conclusions;485
18.6;References;486
19;16 Spectroscopy in the Analysis of Artworks;489
19.1;Abstract;489
19.2;16.1 Introduction;489
19.3;16.2 Raman Spectroscopy;490
19.3.1;16.2.1 Case Studies;497
19.3.1.1;16.2.1.1 Medieval Manuscripts;497
19.3.1.2;16.2.1.2 The Provenance Investigation of the Archeological Amber;503
19.4;16.3 Vis;506
19.4.1;16.3.1 Microfading Tests;508
19.4.1.1;16.3.1.1 Description of the Methodology;509
19.4.1.2;16.3.1.2 Data Processing and Interpretation;510
19.4.1.3;16.3.1.3 Applications of the MFT Method;513
19.5;16.4 Conclusions;514
19.6;References;515
20;Index;524




