Buch, Englisch, 378 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1610 g
Buch, Englisch, 378 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1610 g
ISBN: 978-3-540-42895-4
Verlag: Springer Berlin Heidelberg
Fluids, play an important role in environmental systems, appearing as surface water in rivers, lakes, and coastal regions or in the subsurface as well as in the atmosphere. Mechanics of environmental fluids is concerned with fluid motion, associated mass and heat transport in addition to deformation processes in subsurface systems. In this textbook the fundamental modelling approaches based on continuum mechanics for fluids in the environment are described, including porous media and turbulence. Numerical methods for solving the process governing equations and its object-oriented computer implementation are discussed and illustrated with examples. Finally the application of computer models in civil and environmental engineering is demonstrated.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Geowissenschaften Geologie Hydrologie, Hydrogeologie
- Naturwissenschaften Physik Mechanik Kontinuumsmechanik, Strömungslehre
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Strömungslehre
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
Weitere Infos & Material
I — Continuum Mechanics.- 1 Balance Equations of Fluid Mechanics.- 2 Turbulence.- 3 Porous Media.- 4 Problem Classification.- II — Numerical Methods.- 5 Numerical Methods.- 6 Finite Difference Method.- 7 Finite Element Method.- 8 Finite Volume Method.- III — Software-Engineering.- 9 Object-Oriented Methods for Hydrosystem Modeling.- 10 Object-Oriented Programming Techniques.- 11 Element Implementation.- IV — Selected Topics.- 12 Non-Linear Flow in Fractured Media.- 13 Heat Transport in Fractured-Porous Media.- 14 Density Dependent Flow in Porous Media.- 15 Multiphase Flow in Deformable Porous Media.