Koizumi / Umezawa / Pernot | Power Electronics Device Applications of Diamond Semiconductors | Buch | 978-0-08-102183-5 | sack.de

Buch, Englisch, 466 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 621 g

Reihe: Woodhead Publishing Electronic

Koizumi / Umezawa / Pernot

Power Electronics Device Applications of Diamond Semiconductors


Erscheinungsjahr 2018
ISBN: 978-0-08-102183-5
Verlag: WOODHEAD PUB

Buch, Englisch, 466 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 621 g

Reihe: Woodhead Publishing Electronic

ISBN: 978-0-08-102183-5
Verlag: WOODHEAD PUB


Power Electronics Device Applications of Diamond Semiconductors presents state-of-the-art research on diamond growth, doping, device processing, theoretical modeling and device performance. The book begins with a comprehensive and close examination of diamond crystal growth from the vapor phase for epitaxial diamond and wafer preparation. It looks at single crystal vapor deposition (CVD) growth sectors and defect control, ultra high purity SC-CVD, SC diamond wafer CVD, heteroepitaxy on Ir/MqO and needle-induced large area growth, also discussing the latest doping and semiconductor characterization methods, fundamental material properties and device physics.

The book concludes with a discussion of circuits and applications, featuring the switching behavior of diamond devices and applications, high frequency and high temperature operation, and potential applications of diamond semiconductors for high voltage devices.

Koizumi / Umezawa / Pernot Power Electronics Device Applications of Diamond Semiconductors jetzt bestellen!

Zielgruppe


<p>materials scientists, electric engineers, and physicists studying wide bandgap semiconductors for power electronic applications</p>

Weitere Infos & Material


1. Diamond crystal growth from the vapour phase for epitaxial diamond and wafer preparation
2. Doping and semiconductor characterizations
3. Fundamental material's nature of diamond
4. Device formation and the characterizations
5. Circuits and applications


Umezawa, Hitoshi
Hitoshi Umezawa studied electrical engineering and materials science at Waseda University, Japan, where he graduated in 2002 with a doctoral degree in engineering. After that, he became a Post-Doc at Waseda University financed by Japan Society of the Promotion of Science (JSPS). In 2005 he became a researcher at Diamond Research Center in National Institute of Advanced Industrial Science and Technology (AIST), Japan. He teaches semiconductor devices and power electronics as a visiting professor at Chiba University, Japan. He is lanef Chair, whom the research activities are funded by University Grenoble Alpes, France. His research interests include diamond growth and characterization, high power and high frequency devices and related device fabrication processes. He has more than 120 publications in refereed journals.

Suzuki, Mariko
Mariko Suzuki received PhD degree at Waseda University (Japan) on semiconductor physics especially for wide bandgap materials including diamond. She has been working at Toshiba R&D center as a senior research scientist to research and develop novel electronics devices and power electronics application of diamond. She has many publications on diamond and experimentally confirmed high breakdown features of diamond in recent research. She currently works at Seki Diamond Systems Division of Cornes Technologies Ltd. as a chief scientist. Her present research target is to develop diamond growth and the systems for many applications of diamond including power electronics.

Koizumi, Satoshi
Satoshi Koizumi received doctor of engineering (electrical engineering and electronics) at Aoyama Gakuin University (Tokyo, Japan) and joined the diamond research group at National Institute for Materials Science (NIMS), Tsukuba in 1994. Presently, he works as a principal researcher at NIMS on the topics of semiconducting diamond growth and device applications. He established the n-type diamond (which does not exist in nature) growth technique and has succeeded in deep ultraviolet LED formation by diamond pn junctions for the first time. He has worked on CVD diamond research for more than 25 years and published more than 150 refereed journal papers with about 3000 citations. In 2014, he started a research project of diamond power electronics in the Strategic Innovation Program (SIP) Japan cabinet office.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.