Koch | Introduction to Classical Mathematics I | E-Book | sack.de
E-Book

E-Book, Englisch, Band 70, 453 Seiten, eBook

Reihe: Mathematics and Its Applications

Koch Introduction to Classical Mathematics I

From the Quadratic Reciprocity Law to the Uniformization Theorem
Erscheinungsjahr 2012
ISBN: 978-94-011-3218-3
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark

From the Quadratic Reciprocity Law to the Uniformization Theorem

E-Book, Englisch, Band 70, 453 Seiten, eBook

Reihe: Mathematics and Its Applications

ISBN: 978-94-011-3218-3
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark



Koch Introduction to Classical Mathematics I jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1. Congruences.- 2. Quadratic forms.- 3. Division of the circle (cyclotomy).- 4. Theory of surfaces.- 5. Harmonic analysis.- 6. Prime numbers in arithmetic progressions.- 7. Theory of algebraic equations.- 8. The beginnings of complex function theory.- 9. Entire functions.- 10. Riemann surfaces.- 11. Meromorphic differentials on closed Riemann surfaces.- 12. The theorems of Abel and Jacobi.- 13. Elliptic functions.- 14. Riemannian geometry.- 15. On the number of primes less than a given magnitude.- 16. The origins of algebraic number theory.- 17. Field theory.- 18. Dedekind’s theory of ideals.- 19. The ideal class group and the group of units.- 20. The Dedekind ?-function.- 21. Quadratic forms and quadratic fields.- 22. The different and the discriminant.- 23. Theory of algebraic functions of one variable.- 24. The geometry of numbers.- 25. Normal extensions of algebraic number- and function fields.- 26. Entire functions with growth of finite order.- 27. Proof of the prime number theorem.- 28. Combinatorial topology.- 29. The idea of a Riemann surface.- 30. Uniformisation.- Appendix 1. Rings.- A1.1 Basic ring concepts.- A1.2 Euclidean rings.- A1.3 The characteristic of a ring.- A1.4 Modules over euclidean rings.- Al.5 Construction of fields.- A1.6 Polynomials over fields.- Appendix 2. Set theoretic topology.- A2.1 Definition of a topological space.- A2.2 Compact spaces.- Appendix 3. Green’s theorem.- Appendix 4. Euclidean vector and point spaces.- Appendix 5. Projective spaces.- Name index.- General index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.