Kneipp / Moskovits | Surface-Enhanced Raman Scattering | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 103, 466 Seiten

Reihe: Topics in Applied Physics

Kneipp / Moskovits Surface-Enhanced Raman Scattering

Physics and Applications
1. Auflage 2006
ISBN: 978-3-540-33567-2
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark

Physics and Applications

E-Book, Englisch, Band 103, 466 Seiten

Reihe: Topics in Applied Physics

ISBN: 978-3-540-33567-2
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark



Almost 30 years after the first reports on surface-enhanced Raman signals, the phenomenon of surface-enhanced Raman scattering (SERS) is now well established. SERS gained particular interest after single-molecule Raman spectroscopy had been demonstrated. This book summarizes and discusses present theoretical approaches that explain the phenomenon of SERS and reports on new and exciting experiments and applications of the fascinating spectroscopic effect.

Kneipp / Moskovits Surface-Enhanced Raman Scattering jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Contents;9
3;Surface-Enhanced Raman Spectroscopy: a Brief Perspective;18
3.1;1 Introduction;18
3.2;2 The Electromagnetic Theory of SERS;19
3.3;3 Assemblies of Interacting Nanostructures: The Ubiquitous SERS- Active Systems;24
3.4;4 Possible Extensions of the Electromagnetic Model;29
3.5;5 Conclusions;30
3.6;References;31
3.7;Index;34
4;Electromagnetic Mechanism of SERS;35
4.1;1 Introduction;35
4.2;2 Electromagnetic Mechanism of SERS;37
4.3;3 Numerical Methods for Calculating Electromagnetic Enhancement Factors;38
4.4;4 Results of EM Calculations;39
4.5;5 Long-Range Electromagnetic Enhancement Effects;41
4.6;6 Electronic-Structure Studies;44
4.7;7 SERS Excitation Spectroscopy as a Probe of the Electromagnetic Mechanism;46
4.8;8 Conclusions;55
4.9;References;56
4.10;Index;61
5;Electromagnetic Theory of SERS;62
5.1;1 Introduction;62
5.2;2 Spectral Theory of SERS Enhancement;64
5.3;3 Numerical Computations and Results;71
5.4;References;78
5.5;Index;80
6;Coupled Plasmonic Plasmon/Photonic Resonance Effects in SERS;81
6.1;1 Introduction;81
6.2;2 Methods;82
6.3;3 Single Nanoparticles and Dimers;85
6.4;4 Particle Arrays;89
6.5;5 Conclusion;96
6.6;References;97
6.7;Index;99
7;Estimating SERS Properties of Silver-Particle Aggregates through Generalized Mie Theory;100
7.1;1 Introduction;100
7.2;2 The Recursive Order-of-Scattering Method;103
7.3;3 Examples of GMT Calculations for Ag- Particle Aggregates;105
7.4;4 Summary;114
7.5;References;115
7.6;Index;116
8;Studying SERS from Metal Nanoparticles and Nanoparticles Aggregates with Continuum Models;117
8.1;1 Introduction;117
8.2;2 Description of the Model: A Molecule Close to a Complex- Shaped Nanoparticle;118
8.3;3 Extending the Model to Metal-Particle Aggregates;122
8.4;4 Beyond SERS;127
8.5;5 Summary and Perspectives;132
8.6;References;134
8.7;Index;135
9;SERS From Transition Metals and Excited by Ultraviolet Light;136
9.1;1 Introduction;136
9.2;2 The Physics behind SERS of Transition Metals;139
9.3;3 SERS From Transition Metals with Ultraviolet Excitation;148
9.4;4 Conclusion;153
9.5;References;153
9.6;Index;157
10;Electronic Mechanisms of SERS;158
10.1;1 Introduction;158
10.2;2 Long-Range Electromagnetic (em)-Enhancement Gem and “Chemical”, “First-Layer”-Enhancement Gfirst layer of Various Ag Samples;159
10.3;3 The Electronic Origin of the First-Layer Effect” of SERS;164
10.4;4 The Raman-Continuum of Electron–Hole-Pair Excitations;165
10.5;5 SERS-Active Sites;168
10.6;6 Theory of SERS-Active Sites;172
10.7;7 The Story of Missing NO”;175
10.8;8 EM Enhancement in Single-Molecule SERS of Dyes in Langmuir– Blodgett Films;178
10.9;9 Conjectures on SM SERS in Junction Sites;180
10.10;10 Special Examples of SERS at Low Coverage of Small Silver Aggregates;183
10.11;References;189
10.12;Index;193
11;Two-Photon Excited Surface-Enhanced Raman Scattering;194
11.1;1 Introduction;194
11.2;2 Surface-Enhanced Anti-Stokes Raman Scattering;195
11.3;3 Surface-Enhanced Hyper-Raman Scattering (SEHRS);201
11.4;4 Summary and Conclusion;204
11.5;References;205
11.6;Index;207
12;Applications of the Enhancement of Resonance Raman Scattering and Fluorescence by Strongly Coupled Metallic Nanostructures;208
12.1;1 Introduction;208
12.2;2 Applications;212
12.3;3 Conclusion;224
12.4;References;225
12.5;Index;227
13;Tip-Enhanced Raman Spectroscopy (TERS);228
13.1;1 Introduction;228
13.2;2 TERS Results;231
13.3;3 Conclusion/Outlook;248
13.4;References;249
13.5;Index;251
14;Tip-Enhanced Near-Field Raman Scattering: Fundamentals and New Aspects for Molecular Nanoanalysis/ Identification;252
14.1;1 Introduction;252
14.2;2 Localized Surface-Plasmon Polaritons at the Tip;252
14.3;3 Instrumentation;253
14.4;4 TERS from Single-Wall Carbon Nanotube;254
14.5;5 TERS Measurements on Rhodamine 6G;258
14.6;6 Tip Force on DNA-Based Adenine Molecules;261
14.7;7 Tip-Enhanced Coherent Anti-Stokes Raman Scattering;264
14.8;References;270
14.9;Index;271
15;Single-Molecule SERS Spectroscopy;272
15.1;1 Introduction;272
15.2;2 Single-Molecule SERS Experiments;274
15.3;3 SERS as a Single-Molecule Analytical Tool – Comparison between SERS and Fluorescence;281
15.4;4 Conclusion;284
15.5;References;285
15.6;Index;288
16;Temporal Fluctuations in Single-Molecule SERS Spectra;289
16.1;1 Introduction;289
16.2;2 Materials and Methods;290
16.3;3 Results and Discussion;292
16.4;4 Conclusions and Perspectives;303
16.5;References;303
16.6;Index;306
17;Single-Molecule Surface-Enhanced Resonance Raman Spectroscopy of the Enhanced Green Fluorescent Protein EGFP;307
17.1;1 Introduction;307
17.2;2 Experimental Section;308
17.3;3 Results and Discussion;310
17.4;4 Summary;320
17.5;References;320
17.6;Index;322
18;Surface-Enhanced Vibrational Spectroelectrochemistry: Electric-Field Effects on Redox and Redox- Coupled Processes of Heme Proteins;323
18.1;1 Introduction;323
18.2;2 Strategy and Methodological Approach;324
18.3;3 Electric-Field Effects on the Interfacial Processes of Heme Proteins;331
18.4;4 Concluding Remarks;341
18.5;References;342
18.6;Index;344
19;Nanosensors Based on SERS for Applications in Living Cells;345
19.1;1 Reasons for Intracellular SERS Approaches;345
19.2;2 SERS Nanosensors for Probing of Intrinsic Cellular Chemistry;348
19.3;3 A Labeled Nanosensor Based on the SERS Signal of Indocyanine Green;352
19.4;4 Conclusions and Outlook;355
19.5;References;358
19.6;Index;359
20;Biomolecule Sensing with Adaptive Plasmonic Nanostructures;360
20.1;1 Introduction;360
20.2;2 Adaptive Plasmonic Nanostructures;361
20.3;3 SERS Features of Conformational States: Insulin;363
20.4;4 Ebola Virus after Pseudotyping;367
20.5;5 Tag-Free Antibody–Antigen Binding Detection;368
20.6;6 Protein-Binding Detection with Dye Displacement;371
20.7;7 Summary;372
20.8;References;373
20.9;Index;375
21;Glucose Sensing with Surface-Enhanced Raman Spectroscopy;376
21.1;1 Introduction;376
21.2;2 SERS of Glucose;379
21.3;3 Reversibility and Real-Time Glucose Sensing;380
21.4;4 Quantitative Aspects of Glucose Sensing with SERS;383
21.5;5 Temporal Stability of the SERS Glucose Sensor;385
21.6;6 Conclusions;385
21.7;References;386
21.8;Index;388
22;Quantitative Surface-Enhanced Resonance Raman Spectroscopy for Analysis;389
22.1;1 Introduction;389
22.2;2 Experimental Approach;391
22.3;3 Examples of Analytical Methods;397
22.4;4 Analysis Using Individual Nanoparticles;402
22.5;5 Summary;403
22.6;References;403
22.7;Index;404
23;Rapid Analysis of Microbiological Systems Using SERS;405
23.1;1 Introduction;405
23.2;2 Spectroscopic Characterization of Micro-Organisms;406
23.3;3 Introduction to Multivariate Cluster Analysis;408
23.4;4 Identification of Micro-Organisms Using SERS;410
23.5;5 Monitoring Industrial Bioprocesses;411
23.6;6 Gene-Function Analysis;412
23.7;7 Concluding Remarks;414
23.8;References;414
23.9;Index;416
24;Surface-Enhanced Raman Scattering for Biomedical Diagnostics and Molecular Imaging;417
24.1;1 Introduction;417
24.2;2 Methods and Instrumentation;418
24.3;3 SERS Applications;422
24.4;4 Conclusion;431
24.5;References;433
24.6;Index;434
25;Ultrasensitive Immunoassays Based on Surface- Enhanced Raman Scattering by Immunogold Labels;435
25.1;1 Introduction;435
25.2;2 Assay Design;437
25.3;3 Spectroscopic Instrumentation;442
25.4;4 Maximization of Signal Strength;442
25.5;5 Assays;445
25.6;6 Showcasing Performance;448
25.7;7 Conclusions;451
25.8;References;452
25.9;Index;454
26;Detecting Chemical Agents and Their Hydrolysis Products in Water;455
26.1;1 Introduction;455
26.2;2 Experimental;456
26.3;3 Results and Discussion;457
26.4;4 Conclusions;465
26.5;References;466
26.6;Index;468
27;Index;469



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.