• Neu
Knauer | Discrete and Algebraic Structures | E-Book | sack.de
E-Book

E-Book, Englisch, 266 Seiten

Reihe: Mathematics Study Resources

Knauer Discrete and Algebraic Structures

A Concise Introduction
Erscheinungsjahr 2025
ISBN: 978-3-662-70563-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

A Concise Introduction

E-Book, Englisch, 266 Seiten

Reihe: Mathematics Study Resources

ISBN: 978-3-662-70563-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This textbook presents the topics typically covered in a standard course on discrete structures. It is aimed at students of computer science and mathematics (teaching degree and Bachelor's/Master's) and is designed to accompany lectures, for self-study, and for exam preparation.

Through explanatory introductions to definitions, numerous examples, counterexamples, diagrams, cross-references, and outlooks, the authors manage to present the wide range of topics concisely and comprehensibly.

Numerous exercises facilitate the deepening of the material. Due to its compact presentation of all important discrete and algebraic structures and its extensive index, the book also serves as a reference for mathematicians, computer scientists, and natural scientists.

Contents: From propositional and predicate logic to sets and combinatorics, numbers, relations and mappings, graphs, to the rich spectrum of algebraic structures, and a brief introduction to category theory. Additional chapters include rings and modules as well as matroids.

This book is a translation of the second German edition. The translation was done with the help of artificial intelligence. A subsequent human revision was done primarily in terms of content, so the book may read stylistically differently from a conventional translation.

Knauer Discrete and Algebraic Structures jetzt bestellen!

Zielgruppe


Upper undergraduate

Weitere Infos & Material


1. Fundamentals .- 2. Sets and Counting .- 3. Numbers and their Representations .- 4. Relations.- 5. Mappings.- 6. Graphs.- 7. Groupoid, Semigroup, Group.- 8. From Semirings to Fields.- 9. Act, Vector Space, Extension.- 10 Rings and Modules. 11 Matroids.- 12 Categories.- Literature.- Symbols.- Index.


Prof. Dr. Dr. h.c. Ulrich Knauer is a retired professor of mathematics at Carl von Ossietzky University of Oldenburg (Oldenburg).


Dr. habil. Kolja Knauer is an associate professor in discrete mathematics and computer science at Aix-Marseille University (France) and at the University of Barcelona (Spain).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.