Knapp / Vogan | Cohomological Induction and Unitary Representations | E-Book | sack.de
E-Book

E-Book, Englisch, 968 Seiten

Reihe: Princeton Mathematical Series

Knapp / Vogan Cohomological Induction and Unitary Representations


1. Auflage 2016
ISBN: 978-1-4008-8393-6
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 968 Seiten

Reihe: Princeton Mathematical Series

ISBN: 978-1-4008-8393-6
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



This book offers a systematic treatment--the first in book form--of the development and use of cohomological induction to construct unitary representations. George Mackey introduced induction in 1950 as a real analysis construction for passing from a unitary representation of a closed subgroup of a locally compact group to a unitary representation of the whole group. Later a parallel construction using complex analysis and its associated co-homology theories grew up as a result of work by Borel, Weil, Harish-Chandra, Bott, Langlands, Kostant, and Schmid. Cohomological induction, introduced by Zuckerman, is an algebraic analog that is technically more manageable than the complex-analysis construction and leads to a large repertory of irreducible unitary representations of reductive Lie groups.

The book, which is accessible to students beyond the first year of graduate school, will interest mathematicians and physicists who want to learn about and take advantage of the algebraic side of the representation theory of Lie groups. Cohomological Induction and Unitary Representations develops the necessary background in representation theory and includes an introductory chapter of motivation, a thorough treatment of the "translation principle," and four appendices on algebra and analysis.

Knapp / Vogan Cohomological Induction and Unitary Representations jetzt bestellen!

Weitere Infos & Material


Preface

Prerequisites by Chapter

Standard Notation

Introduction

I Hecke Algebras

II The Category C(g, K)

III Duality Theorem

IV Reductive Pairs

V Cohomological Induction

VI Signature Theorem

VII Translation Functors

VIII Irreducibility Theorem

IX Unitarizability Theorem

X Minimal K Types

XI Transfer Theorem

XII Epilog: Weakly Unipotent Representations

App. A. Miscellaneous Algebra

App. B. Distributions on Manifolds

App. C. Elementary Homological Algebra

App. D. Spectral Sequences

Notes

References

Index of Notation

Index


Anthony W. Knapp is Professor of Mathematics at the State University of New York at Stony Brook. David A. Vogan, Jr., is Professor of Mathematics at the Massachusetts Institute of Technology.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.