Klein Nested Simulations: Theory and Application


1. Auflage 2024
ISBN: 978-3-658-43853-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 137 Seiten, eBook

Reihe: Mathematische Optimierung und Wirtschaftsmathematik | Mathematical Optimization and Economathematics

ISBN: 978-3-658-43853-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Maximilian Klein analyses nested Monte Carlo simulations for the approximation of conditional expected values. Thereby, the book deals with two general risk functional classes for conditional expected values, on the one hand the class of moment-based estimators (notable examples are the probability of a large loss or the lower partial moments) and on the other hand the class of quantile-based estimators. For both functional classes, the almost sure convergence of the respective estimator is proven and the underlying convergence speed is quantified. In particular, the class of quantile-based estimators has important practical consequences especially for life insurance companies since the Value-at-Risk falls into this class and thus covers the solvency capital requirement problem. Furthermore, a novel non parametric confidence interval method for quantiles is presented which takes the additional noise of the inner simulation into account.
Klein Nested Simulations: Theory and Application jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Introduction.- Basic Concepts, Probability Inequalities and Limit Theorems.- Almost Sure Convergence of Moment-Based Estimators.- Almost Sure Convergence of Quantile-Based Estimators.- Non Parametric Confidence Intervals for Quantiles.- Numerical Analysis.- Conclusion.


Maximilian Klein holds a PhD in mathematics from the University of Augsburg. Currently, he works as a portfolio manager at an asset management company.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.