E-Book, Englisch, 384 Seiten, Web PDF
Klamt / Lauber Control in Transportation Systems
1. Auflage 2014
ISBN: 978-1-4831-5766-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the 4th IFAC/IFIP/IFORS Conference, Baden-Baden, Federal Republic of Germany, 20-22 April 1983
E-Book, Englisch, 384 Seiten, Web PDF
ISBN: 978-1-4831-5766-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Control in Transportation Systems covers the proceedings of the Fourth International Federation of Automatic Control (IFAC)/International Federation for Information Processing (IFIP)/International Federation of Operational Research Societies (IFORS) Conference on Control in Transportation Systems. The book discusses papers that tackle applications, methodologies, and control problems of surface transportation systems. This text covers topics such as operation of ground transportation systems; availability and safety; and the impact of modeling on the operation of transportation systems. This selection also discusses self-tuning control of multilocomotive-powered long freight trains; fuzzy control for automatic train operation system; and energy optimal control in transportation systems. This book will be of great use to engineers especially those who specialize with transport systems.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Control in Transportation Systems;4
3;Copyright Page;5
4;4Th Ifac/Ifip/Ifors Conference Oncontrol In Transportation Systems;6
5;Preface;7
6;Table of Contents;8
7;CHAPTER 1. OPERATION OF GROUND TRANSPORTATION SYSTEMS: TRAFFIC CONTROL OF SUBWAYS
;12
7.1;1. GENERAL CONCEPTS OF THE CARRIER;12
7.2;2. ORGANISING THE OPERATION;14
7.3;3. EXAMPLES;14
7.4;4. CONCLUSION;18
8;CHAPTER 2. AVAILABILITY AND SAFETY;20
8.1;AVAILABILITY;20
8.2;SAFETY;21
8.3;CURRENT DEVELOPMENTS IN SAFE HIGH AVAILABILITY SYSTEMS
;23
8.4;PROOF OF SAFETY;23
8.5;CONCLUSIONS;24
8.6;REFERENCES;25
9;CHAPTER 3. THE IMPACT OF MODELLING ON THE OPERATION OF TRANSPORTATION SYSTEMS
;26
9.1;1. INTRODUCTION;26
9.2;2. MODELLING OF CONVENTIONAL OPERATIONS OF TRANSPORTATION SYSTEMS
;27
9.3;3. MODELLING OF COMPUTERIZED OPERATIONS OF TRANSPORTATION SYSTEMS
;27
9.4;4. A GENERAL MODEL FOR COMPUTERIZED OPERATION OF TRANSPORTATION SYSTEMS
;27
9.5;5. SPECIFICATION OF COMPUTERIZED OPERATION;28
9.6;6. SKETCH OF THE NOMINAL STATE OF ON-DEMAND BUS SYSTEMS
;28
9.7;7. MODEL FOR DATA TRANSMISSION ON MOBILE
CHANNELS;30
9.8;8. THE IMPACT OF MODELLING ON THE DESIGN OF SYSTEMS FOR COMPUTERIZED OPERATION OF TRANSPORTATION SYSTEMS
;31
9.9;9. POSITION DETERMINATION ALONG A TRACK AS A DESIGN EXAMPLE
;32
9.10;CONCLUSIONS;33
10;CHAPTER 4. SELF-TUNING CONTROL OF MULTILOCOMOTIVE-POWERED LONG FREIGHT TRAINS
;36
10.1;INTRODUCTION;36
10.2;TRAIN MODEL;37
10.3;SELF-TUNING REGULATORS;38
10.4;SIMULATION;39
10.5;CONCLUSION;41
10.6;REFERENCES;41
11;CHAPTER 5. FUZZY CONTROL FOR AUTOMATIC TRAIN OPERATION SYSTEM
;44
11.1;INTRODUCTION;44
11.2;AUTOMATIC TRAIN OPERATION CONTROL AND MODELING
;44
11.3;TRAIN OPERATION BY A HUMAN OPERATOR
;45
11.4;FUZZY CONTROL;45
11.5;THE FUZZY CONTROLLED ATO;46
11.6;SIMULATION;47
11.7;CONCLUSIONS;47
11.8;REFERENCES;48
12;CHAPTER 6. THE LILLE UNDERGROUND–FIRST APPLICATION OF THE VAL SYSTEM
;52
12.1;1. BACKGROUND;52
12.2;2. THE FUNDAMENTAL OPTIONS;52
12.3;3. THE TECHNOLOGY;53
12.4;4. SAFETY AND AVAILABILITY;55
12.5;5. OPERATION AND MAINTENANCE;56
12.6;6. EXPERIMENTAL OPERATION ON THE FIRST SECTION OF THE LINE
;56
12.7;CONCLUSION;57
13;CHAPTER 7. DEMAND BUS SYSTEM FOR TSUKUBA SCIENCE CITY AND ITS SIMULATION STUDY
;58
13.1;INTRODUCTION;58
13.2;THE DEMAND BUS SYSTEM FOR TSUKUBA SCIENCE CITY
;59
13.3;SIMULATION MODEL;59
13.4;SIMULATION;60
13.5;RESULTS OF THE SIMULATION;61
13.6;DISCUSSION;63
13.7;CONCLUSIONS;65
13.8;REFERENCES;65
14;CHAPTER 8. DETERMINATION OF OPTIMAL PATH AND ALLOCATION OF DEMAND BUSES USING FUZZY HEURISTIC APPROACH
;66
14.1;INTRODUCTION;66
14.2;CONNECTION MATRIX OF ROADS;67
14.3;GOALS, CONSTRAINTS AND FUZZY VARIABLES;68
14.4;OPTIMAL PATHS-NON FUZZY CASE
;69
14.5;FUZZY HEURISTIC APPROACH- LEVEL 0;70
14.6;SIMPLE STOCHASTIC MODEL;71
14.7;FUZZY HEURISTIC APPROACH- LEVEL 1;71
14.8;REFERENCES;71
15;CHAPTER 9. OPTIMAL DISPATCHING CONTROL OF BUS LINES
;72
15.1;INTRODUCTION;72
15.2;DISPATCHING CONTROL;73
15.3;OPTIMAL CONTROL;75
15.4;CONCLUSIONS;76
15.5;ACKNOWLEDGEMENT;76
15.6;REFERENCES;76
16;CHAPTER 10. TWO STUDIES ON A COMPUTER AIDED TRAIN SCHEDULE ADJUSTMENT
;78
16.1;PART 1: NETWORK REPRESENTATION OF THE TRAIN SCHEDULE
;78
16.1.1;INTRODUCTION;78
16.1.2;TRANSACTION NETWORK;78
16.1.3;FEATURES OF TRANSACTION NETWORK;79
16.1.4;A NEW METHOD TO FIND OUT DEAD-LOCK PHENOMENA;80
16.1.5;A SIMPLE EXAMPLE;80
16.1.6;CONCLUDING REMARK;81
16.1.7;REFERENCES;81
16.2;PART 2: AN ALGORITHM FOR AN OPTIMAL TRAIN ADJUSTMENT BASED ON CHANGING THE ORDER OF TRAINS
;81
16.2.1;INTRODUCTION;81
16.2.2;FUNCTION OF A NEW ALGORITHM;81
16.2.3;SCOPE OF CONSIDERATION;82
16.2.4;ESTIMATION FUNCTION;82
16.2.5;TRAIN ADJUSTMENT;82
16.2.6;UNIQUENESS OF TRAIN OPERATION;82
16.2.7;SUMMARY;83
16.2.8;DECIDING THE TRAIN ORDER IN STATION SEQUENCE;83
16.2.9;STAGE SIMULATION;83
16.2.10;TREE STRUCTURE;84
16.2.11;EXAMPLE;84
16.2.12;RESULTS OF NO TRAIN ADJUSTMENT;84
16.2.13;APPLICATION OF THE ALGORITHM;84
16.2.14;CONCLUSIONS;85
16.2.15;REFERENCES;85
17;CHAPTER 11. DIGITAL STATE CONTROL AND OBSERVATION OF MAGLEV VEHICLE MOTIONS
;86
17.1;INTRODUCTION AND PERFORMANCE REQUIREMENTS
;86
17.2;SYSTEM FEATURES AND DYNAMICS;87
17.3;CONTROL SYSTEM;87
17.4;REFERENCES;92
18;CHAPTER 12. REQUIREMENTS OF OPERATIONS CONTROL FOR MAGLEV TRANSIT SYSTEMS
;94
18.1;ASPECTS OF OPERATION IN HIGH SPEED MAGLEV TRANSIT
;94
18.2;IMPORTANT PARAMETERS OFNOMINAL OPERATION;94
18.3;CONSIDERING THE CONTROL DESIGN;96
18.4;REFERENCES;98
19;CHAPTER 13. AUTOMATIC ROUTING AND SCHEDULING OF A FLEET OF VEHICLES PROVIDING DOOR-TO-DOOR SERVICE FOR HANDICAPPED PEOPLE
;100
19.1;INTRODUCTION;100
19.2;APPROACH OF THE PROBLEM;100
19.3;THE ALLOTING ALGORITHM
;101
19.4;RESULTS OF SIMULATION;104
19.5;CONCLUSIONS;104
19.6;REFERENCES;105
20;CHAPTER 14. THE CONCEPTION AND DEVELOPMENT OF AN OPERATION CONTROL SYSTEM FOR FLEXIBLE MODES OF OPERATION
;108
20.1;INTRODUCTION;108
20.2;SYSTEM FUNCTIONS;108
20.3;DESCRIPTION OF THE SOFTWARE STRUCTURE
;111
20.4;DESCRIPTION OF THEROUTING PROCEDURE;112
20.5;FUTURE PROSPECTS;114
21;CHAPTER 15. ALLOCATION ALGORITHM FOR MIXED OPERATION MODES
;116
21.1;INTRODUCTION;116
21.2;REQUIREMENTS ON THE ALLOCATION ALGORITHM
;117
21.3;DESCRIPTION OF THE ALGORITHM;117
21.4;DETAILS OF THE DETERMINATION OF TRANSPORT ROUTES
;118
21.5;DETAILS OF THE ALLOCATIONIN FREE DEMAND MODE;119
21.6;QUANTITATIVE REQUIREMENTS;121
21.7;IMPLEMENTATION;121
21.8;REFERENCES;122
22;CHAPTER 16. ENERGY-OPTIMAL CONTROL INTRANSPORTATION SYSTEMS;124
22.1;INTRODUCTION;124
22.2;MATHEMATICAL FORMULATION;125
22.3;METHODS OF SOLUTION
;126
22.4;THE ALGORITHM OF OPTIMAL CONTROL
;126
22.5;CONCLUSION;129
22.6;REFERENCES;129
23;CHAPTER 17. ENERGY REGENERATION IN TRANSPORTATION SYSTEMS–METHODOLOGIES FOR POWER-NETWORKS SIMULATION
;130
23.1;INTRODUCTION;130
23.2;POWER-NETWORK PECULIARITIES;130
23.3;THE MODEL POWER NETWORK;131
23.4;COMPARISON OF SOLUTION METHODS;132
23.5;COMPARISON AT EQUAL TOLERANCE DEGREE;132
23.6;THE INFLUENCE OF INITIAL CONDITIONS
;132
23.7;THE TOLERANCE OF THE ITERATIVE PROCEDURE
;133
23.8;CONCLUSIONS;134
23.9;REFERENCES;135
24;CHAPTER 18. MODELS AND MEANS OF TRAIN OPERATION CONTROL
;136
24.1;CONCLUSION;141
24.2;REFERENCES;141
25;CHAPTER 19. A MODEL OF TRAINS MOVEMENT THROUGH A RAILWAY MAIN-LINE CONTROLLED BY A COMPUTER SYSTEM
;142
25.1;INTRODUCTION;142
25.2;THE PRINCIPLES OF PLANNING
;142
25.3;MODEL ELEMENTS;143
25.4;MODEL UTILIZATION;144
25.5;CONCLUSION;144
25.6;REFERENCES;144
26;CHAPTER 20. DISTRIBUTED MICROCOMPUTER-BASED CONTROL OF MULTIPLE SIGNALIZED TRAFFIC INTERSECTIONS
;146
26.1;1. INTRODUCTION;146
26.2;2. TRAFFIC CONTROL SYSTEM CONFIGURATION
;146
26.3;3. THE OPTIMIZATION PROCEDURE;148
26.4;4. MICROCOMPUTER-BASED REALIZATION;149
26.5;5. SYSTEM SIMULATION;150
26.6;6. CONCLUSION;150
26.7;REFERENCES;150
27;CHAPTER 21. DETERMINING THE TIME-DEPENDENT TRIP DISTRIBUTION IN A COMPLEX INTERSECTION FOR TRAFFIC RESPONSIVE CONTROL
;152
27.1;INTRODUCTION;152
27.2;PROBLEM STATEMENT;153
27.3;ESTIMATION ALGORITHM;154
27.4;RESULTS;156
27.5;CONCLUSIONS;157
27.6;REFERENCES;158
28;CHAPTER 22. MAXIMIZATION OF TRAFFIC FLOW THROUGH INTERSECTION BY BRANCH-AND-BOUND METHOD
;160
28.1;INTRODUCTION;160
28.2;PROBLEM STATEMENT;160
28.3;SOLUTION METHOD;162
28.4;CONCLUSIONS;164
28.5;REFERENCES;164
29;CHAPTER 23. FEASIBILITY OF A DISTRIBUTED COMPUTERTRAFFIC CONTROL SYSTEM;168
29.1;I. INTRODUCTION;168
29.2;II. STRUCTURE OF THE COMPUTER SYSTEM
;168
29.3;III. ALGORITHM FOR OPTIMIZATION;169
29.4;IV. RESULTS;172
29.5;V. MEMORY REQUIREMENT AND EXECUTION TIME
;173
29.6;VI. CONCLUSION;174
29.7;BIBLIOGRAPHY;174
30;CHAPTER 24. DESIGN OF AN AUTOMATIC CONTROL SYSTEM FOR TRAIN-TO-TRAIN CONTAINER TRANSFER
;176
30.1;GENERAL REMARKS;176
30.2;THE OPERATING SYSTEM BFS;177
30.3;THE TRAIN-TO-TRAIN CONTAINER TRANSFER SYSTEM -TEST AND EFFICIENCY
;178
30.4;CONCLUDING REMARKS;179
30.5;REFERNCES;179
31;CHAPTER 25. AN OPTIMIZATION TECHNIQUE OF BIGCONTAINER TRANSPORT IN ROAD NETWORK;186
31.1;I. INTRODUCTION;186
31.2;II. METHOD;187
31.3;III. COMPUTATIONAL RESULTS;191
31.4;IV. REFERENCES;191
32;CHAPTER 26. OPTIMIZATION OF THE DATA BASE LOGICAL STRUCTURE
;192
32.1;REFERENCES;197
33;CHAPTER 27. A COMPREHENSIVE CONTROL CONCEPT FOR MERGING OF AUTOMATED VEHICLES UNDERA BROAD CLASS OF TRAFFIC CONDITIONS
;198
33.1;1. GENERAL ASPECTS OF THE MERGING CONTROL PROBLEM
;198
33.2;2. THE TIME AND EVENT DEPENDENT ORDER AND STRUCTURE OF THE "PROCESS" AND ITS RELATION TO MODES OF CONFLICT
;198
33.3;3.DESIGN APPROACH FOR A COMPREHENSIVE MERGING CONTROL CONCEPT
;199
33.4;4. VALIDATION OF THE MERGING CONTROLLER BY SIMULATION
;201
33.5;5. IMPLEMENTATION ASPECTS OF THE MERGING CONTROLLER
;202
33.6;6. SUMMARY AND CONCLUSIONS;202
33.7;REFERENCES;202
34;CHAPTER 28. FREEWAY TRAFFIC MODELLING AND CONTROL
;206
34.1;1.INTRODUCTION;206
34.2;2.MACROSCOPIC VARIABLES AND CONTROL PROBLEM
;206
34.3;3. MODELS BASED ON THE CONSERVATION EQUATION
;207
34.4;4. EXTENSION OF THE MODEL BYUSE OF THE VOLUME-DENSITY CHARACTERISTIC (VDC)
;208
34.5;5. CONSIDERATION OF THE MEAN SPEED DYNAMICS
;210
34.6;6. PRACTICAL FREEWAY TRAFFIC CONTROL SYSTEMS
;211
34.7;7. CONCLUSIONS;211
34.8;REFERENCES;212
35;CHAPTER 29. A MARTINGALE APPROACH TO ESTIMATION AND CONTROL OF TRAFFIC FLOW ON MOTORWAYS
;214
35.1;INTRODUCTION;214
35.2;THE TRAFFIC FLOW MODEL;215
35.3;ESTIMATION;217
35.4;CONTROL;219
35.5;CONCLUSION;220
35.6;REFERENCES;220
36;CHAPTER 30. THE METRO LINE SIMULATOR OF RATP;222
36.1;1. WHY A SIMULATOR;222
36.2;2. THE TRAINEES;222
36.3;3. THE DESIGN;222
36.4;4. THE SIMULATOR LAYOUT;223
36.5;5. SOFTWARE;223
36.6;6. THE OPERATING PROCEDURES;224
36.7;7. CONCLUSION;224
37;CHAPTER 31. A METHOD TO DISTINGUISH SAFE FROM LESS SAFE DRIVING
;226
37.1;INTRODUCTION;226
37.2;INFORMATION PROCESSING;227
37.3;MEASUREMENTS;228
37.4;CONCLUSION;230
37.5;ACKNOWLEDGEMENTS;230
37.6;REFERENCES;230
38;CHAPTER 32. IMPROVING THE USER GUIDANCE OF TICKET SLOT MACHINES
;234
38.1;INTRODUCTION;234
38.2;1. COLLECTING AND OBSERVING;234
38.3;2. EXPERIMENTS;235
38.4;3. ANALYSIS AND CONCLUSIONS;236
38.5;4. IMPROVEMENTS;238
38.6;5. ACKNOWLEDGEMENT;238
38.7;REFERENCES;238
39;CHAPTER 33. FLOATING TRAFFIC CONTROL FOR PUBLIC TRANSPORTATION SYSTEM
;240
39.1;INTRODUCTION;240
39.2;TRAFFIC MODEL;240
39.3;CONTROL FOR FLOATING OPERATION;242
39.4;EXTENDED MODEL FOR A COMPLEX SYSTEM WITH MERGING AND BRANCHING
;243
39.5;SENSITIVITY TO SYSTEM DISTURBANCE;245
39.6;SIMPLIFICATION OF CONTROL CALCULATION;245
39.7;CONCLUDING REMARK;246
39.8;REFERENCE;246
40;CHAPTER 34. A NEW APPROACH FOR REAL-TIME CONTROL OF URBAN TRAFFIC NETWORKS
;248
40.1;INTRODUCTION;248
40.2;CONCLUSION;252
40.3;REFERENCES;252
41;CHAPTER 35. OPERATIONS PLANNING AND CONTROL INURBAN PUBLIC TRANSPORT AS AN INTEGRATED CONTROL LOOP
;254
41.1;CONTROL LOOPS OF OPERATIONS;254
41.2;WORKING PRINCIPLE OF AUTOMATIC VEHICLE MONITORING SYSTEMS (AVM)
;255
41.3;SYSTEM SUPERVISION ASSISTANCE WITH AVM
;256
41.4;OPERATIONS PLANNING;258
41.5;ACTUAL STATE OF DEVELOPMENT;259
41.6;REFERENCES;260
42;CHAPTER 36. ON THE USE OF A COMPUTER-AIDED SPECIFICATION TOOL TO SUPPORT THE DEVELOPMENT AND LICENSING OF SAFETY-RELATED SYSTEMS
;262
42.1;INTRODUCTION;262
42.2;SAFETY- AND RELIABILITYREQUIREMENTS;262
42.3;PROBLEMS CAUSED BY THE COMPLEXITY OF HAARDWARE/SOFTWARE-SYSTEMS
;263
42.4;FACTORS EFFECTING THE OCCURANCE OF HUMAN ERRORS
;263
42.5;STRATEGIES FOR SAFETY RELATED SYSTEMS
;263
42.6;FAULT-AVOIDANCE AND FAULT-REMOVAL
;264
42.7;REQUIREMENTS SPECIFICATION;265
42.8;DESIGN OF SAFETY RELATED SYSTEMS
;265
42.9;ANALYSING AND CHECKING OF THE SPECIFICATION
;267
42.10;DOCUMENTATION OF SAFETY RELATED SYSTEMS
;267
42.11;CONCLUSION;269
42.12;ACKNOWLEDGEMENT;269
42.13;REFERENCES;269
43;CHAPTER 37. SAFETY, AVAILABILITY AND COST QUESTIONS ABOUT DIVERSITY
;270
43.1;INTRODUCTION;270
43.2;RISK CONSIDERATION;270
43.3;SINGULAR SYSTEM;271
43.4;DIVERSE SYSTEM;272
43.5;CONCLUSIONS;276
43.6;ACKNOWLEDGEMENT;276
43.7;REFERENCES;276
44;CHAPTER 38. CONTROL TASK ASSIGNMENT AND SYSTEMS AVAILABILITY – RELIABILITY ANALYSIS OF SPATIALLY DISTRIBUTED MICROCOMPUTER CONTROL SYSTEMS
;278
44.1;INTRODUCTION;278
44.2;CONTROL TASK ASSIGNMENT
;278
44.3;THE SIMULATIOI METHOD
;279
44.4;SIMULATION RESULTS
;281
44.5;CONCLUSIONS
;281
44.6;REFERENCES;283
45;CHAPTER 39. THE ACTUAL CHANGE IN QUESTIONS OF THE PROOF OF SAFETY AND AVAILABILITY IN THE RAILWAYS TECHNIQUES
;284
45.1;INTRODUCTION;284
45.2;2. DEFINITIONS, THE RELATION OF THE RELEVANT TERMS
;285
45.3;3. THE QUANTITATIVE SAFETY VIEW;286
45.4;4. MANAGEMENT ASPECTS OF SAFETY AND SAFETY RESPONSIBILITY
;289
45.5;5. CONCLUSIONS;289
45.6;REFERENCES;290
46;CHAPTER 40. AREA MEASUREMENT OF TRAFFIC FLOW USING PHOTOELECTRIC ELEMENTS
;292
46.1;INTRODUCTION;292
46.2;PILOT EXPERIMENT OF DETECTOR;292
46.3;EXPERIMENTAL RESULT;293
46.4;DISCUSSION;298
46.5;CONCLUSION;298
46.6;REFERENCES;298
47;CHAPTER 41. OPTIMAL FIXED-TIME VEHICULAR CONTROL FOR MULTI-JUNCTION NODES USING MATHEMATICAL PROGRAMMING
;300
47.1;INTRODUCTION;300
47.2;MULTI-JUNCTION NODES;301
47.3;SOME TERMINOLOGY AND NOTATION;302
47.4;PROBLEM FORMAL STATEMENT;302
47.5;SOME PROPERTIES OF THE MODEL;304
47.6;METHODS FOR REDUCING THE NUMBER OF CASES
;304
47.7;SOLVING SYSTEM;307
47.8;CONCLUSIONS;307
47.9;ACKNOWLEDGMENTS;307
47.10;REFERENCES;307
48;CHAPTER 42. A METHOD FOR ANALYSING TRAFFIC STREAMS IN AN URBAN NETWORK
;308
48.1;I - THE DATA;308
48.2;II THE AIMS OF THE STUDY;309
48.3;Ill GLOBAL ANALYSIS;309
48.4;IV - SPACE ANALYSIS;310
48.5;V - TIME ANALYSIS;312
48.6;CONCLUSION;313
48.7;REFERENCES;314
49;CHAPTER 43. THE PRODYN REAL TIME TRAFFIC ALGORITHM;316
49.1;1. INTRODUCTION;316
49.2;2. FORMULATION;316
49.3;3. DECOMPOSITION COORDINATION;317
49.4;4. SUBSYSTEM O...M.....O.
;318
49.5;5. REAL TIME ASPECTS -IMPLEMENTATION;319
49.6;7. CONCLUSION;320
49.7;6. TESTS OF PRODYN - RESULTS
;319
49.8;REFERENCES;320
50;CHAPTER 44. SIMULATION OF PASSENGER FLOWS ON THE METRO LINES
;322
50.1;INTRODUCTION;322
50.2;THE MAIN CONTENS OF THE STUDY
;322
50.3;DATA COLLECTING SYSTEM WITH ACP AND WD INSTALLED AT EVERY STATION IN BOTH DARECTIONS
;323
50.4;DATA COLLECTING SYSTEM WITHOUT USING WD
;324
50.5;CONCLUSION;326
50.6;REFERENCES;327
51;CHAPTER 45. SAFETY STUDIES FOR THE"METRO DE CARACAS
;328
51.1;INTRODUCTION;328
51.2;SAFETY SPECIFICATIONS;328
51.3;3. QUALITATIVE ANALYSES;329
51.4;4. SAFETY OBJECTIVES;331
51.5;5. Conclusions;334
51.6;Références
;334
52;CHAPTER 46. SAFETY ENGINEERING FOR AN ACTIVE HUNTING CONTROLLER FOR BOGIES IN WHEEL/RAIL SYSTEMS
;336
52.1;INTRODUCTION;336
52.2;METHODS OF SAFETY ENGINEERING;337
52.3;SAFETY CONCEPT;338
52.4;EVALUATION OF SAFETY AND RELIABILITY;340
52.5;ACKNOWLEDGEMENTS;342
52.6;CONCLUSIONS;342
52.7;REFERENCES;342
53;CHAPTER 47. LICENSING OF SAFETY-RELATED EQUIPMENT OF TRACK-BOUND TRANSPORTATION SYSTEMS
;344
53.1;INTRODUCTION;344
53.2;DERIVATION OF SAFETY REQUIREMENTS
;344
53.3;PHILOSOPHY OF SAFETY;345
53.4;TECHNICAL REALIZATION AND SAFETY VERIFICATION
;345
53.5;CONCLUSIONS TO BE DRAWN FROM VERIFICATION OF SAFETY
;346
53.6;ASPECTS OF RELIABILITY;346
53.7;CONCLUSION;346
53.8;REFERENCES;347
54;CHAPTER 48. THE USE OF LSI CIRCUITS IN SIGNALLING SAFETY SYSTEMS
;348
54.1;INTRODUCTION;348
54.2;THE USE OF THE TWO k OUT-OF n CODES
;349
54.3;THE EXAMPLE OF THE USE IN SIGNALLING
;350
54.4;THE REALIZATION;351
54.5;THE CONCLUSION;353
54.6;REFERENCES;353
55;CHAPTER 49. MOVING-MONITORING SYSTEM APPLIED MARK TRACING
;354
55.1;INTRODUCTION;354
55.2;METHODOLOGY;354
55.3;HARDWARE;357
55.4;OPERATION OF THE SYSTEM;359
55.5;CONCLUSIONS;359
55.6;REFERENCES;359
56;CHAPTER 50. STOCHASTIC MODELS FOR ESTIMATING THE EFFECTIVENESS OF A ROUTE GUIDANCE SYSTEM
;360
56.1;INTRODUCTION;360
56.2;FORMATION OF THE EFFECTIVENESS;360
56.3;NUMERICAL EXAMPLES;362
56.4;ROUTE GUIDANCE TESTS;363
56.5;VERIFICATION OF THE MODELS;363
56.6;PARAMETERS RELATED TO THE MODELS;364
56.7;CONCLUSIONS;365
56.8;REFERENCES;366
57;CHAPTER 51. ON SAFE LONGITUDINAL CONTROL OF GROUND TRANSPORTATION VEHICLES
;368
57.1;1. INTRODUCTION;368
57.2;2. SPACING POLICIES;368
57.3;3. SAFE LONGITUDINAL CONTROL;369
57.4;4. CONCLUSIONS;371
57.5;REFERENCES;371
58;CHAPTER 52. A VELOCITY-ADAPTIVE, MICROPROCESSOR-BASED, VEHICLE LATERAL CONTROLLER
;376
58.1;INTRODUCTION;376
58.2;LATERAL CONTROLLER DESIGN;376
58.3;FULL-SCALE STUDIES;378
58.4;DISCUSSION;379
58.5;REFERENCES;379
59;AUTHOR INDEX;384




