Kinnmark | The Shallow Water Wave Equations: Formulation, Analysis and Application | Buch | 978-3-540-16031-1 | sack.de

Buch, Englisch, Band 15, 188 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 382 g

Reihe: Lecture Notes in Engineering

Kinnmark

The Shallow Water Wave Equations: Formulation, Analysis and Application


1. Auflage 1985
ISBN: 978-3-540-16031-1
Verlag: Springer

Buch, Englisch, Band 15, 188 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 382 g

Reihe: Lecture Notes in Engineering

ISBN: 978-3-540-16031-1
Verlag: Springer


1. 1 AREAS OF APPLICATION FOR THE SHALLOW WATER EQUATIONS The shallow water equations describe conservation of mass and mo­ mentum in a fluid. They may be expressed in the primitive equation form Continuity Equation _ a, + V. (Hv) = 0 L(l;,v;h) at (1. 1) Non-Conservative Momentum Equations a M("vjt,f,g,h,A) = at(v) + (v. V)v + tv - fkxv + gV, - AIH = 0 (1. 2) 2 where is elevation above a datum (L) ~ h is bathymetry (L) H = h + C is total fluid depth (L) v is vertically averaged fluid velocity in eastward direction (x) and northward direction (y) (LIT) t is the non-linear friction coefficient (liT) f is the Coriolis parameter (liT) is acceleration due to gravity (L/T2) g A is atmospheric (wind) forcing in eastward direction (x) and northward direction (y) (L2/T2) v is the gradient operator (IlL) k is a unit vector in the vertical direction (1) x is positive eastward (L) is positive northward (L) Y t is time (T) These Non-Conservative Momentum Equations may be compared to the Conservative Momentum Equations (2. 4). The latter originate directly from a vertical integration of a momentum balance over a fluid ele­ ment. The former are obtained indirectly, through subtraction of the continuity equation from the latter. Equations (1. 1) and (1. 2) are valid under the following assumptions: 1. The fluid is well-mixed vertically with a hydrostatic pressure gradient. 2. The density of the fluid is constant.

Kinnmark The Shallow Water Wave Equations: Formulation, Analysis and Application jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


I. Introduction.- Areas of Application for the Shallow Water Equations.- Finite Element Methods for Solution of the Shallow Water Equations.- Methods for Analyzing Spatial Oscillations in Numerical Schemes.- Methods for Analyzing Stability of Numerical Schemes.- II. Equation Formulation.- Primitive Equation Form.- Wave Equation Form.- Generalized Wave Equation Form.- Linearized Form of the Continuity and Momentum Equations.- III. Fourier Analysis Methods.- Fourier Analysis: An Accuracy Measure.- Amplitude of Propagation Factors Arising from Second Degree Polynomials.- IV. Stability.- General Concepts.- Routh-Hurwitz and Liénard-Chipart.- Routh-Hurwitz and Orlando.- Factorization of Higher Degree Polynomials into Lower Degree Polynomials.- Determination of Stability for a Product of Polynomials.- V. Explicit Methods Using Various Spatial Discretizations.- Equal Node Spacing and Constant Bathymetry in One Dimension.- Application to Unequal Node Spacing.- Applications with Even Node Spacing and Variable Bathymetry.- Application to a Rectangular Grid.- VI. Implicit Methods.- Reducing the Number of Time Dependent Terms in the Matrix for the Wave Equation.- Explicit Treatment of the Coriolis Term in an Implicit Wave Continuity Equation.- Repeated Back Substitutions Replacing Decompositions.- The Generalized Wave Continuity Equation.- VII. Spatial Oscillations.- N-Dimensional Uniform Rectangular Grid.- N-Dimensional Nonuniform Rectangular Grid with Multi-Information Nodes.- Leapfrog Scheme and Wave Equation Formulation on Linear Elements.- Leapfrog Scheme and Wave Equation Formulation on Quadratic Elements.- The Use of Dispersion Analysis in Evaluating Numerical Schemes.- The 2?x Test: Assessing the Ability to Suppress Node-to-Node Oscillations.- VIII. TemporalOscillations.- Numerical Artifacts.- A Different Three Time Level Approximation of the Momentum Equations.- A Two Time Level Approximation of the Momentum Equations.- IX. Applications.- Application to Quarter Circle Harbor.- Application to the Southern Part of the North Sea — I.- Application to the Southern Part of the North Sea — II.- X. Conclusions.- A. Equivalent Formulations of Conditions Which Guarantee Roots of Magnitude Less than Unity.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.