Kim / Shao | Statistical Methods for Handling Incomplete Data | Buch | 978-1-032-11813-0 | sack.de

Buch, Englisch, 380 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 579 g

Kim / Shao

Statistical Methods for Handling Incomplete Data

Buch, Englisch, 380 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 579 g

ISBN: 978-1-032-11813-0
Verlag: Chapman and Hall/CRC


Due to recent theoretical findings and advances in statistical computing, there has been a rapid development of techniques and applications in the area of missing data analysis. Statistical Methods for Handling Incomplete Data covers the most up-to-date statistical theories and computational methods for analyzing incomplete data.



Features

- Uses the mean score equation as a building block for developing the theory for missing data analysis

- Provides comprehensive coverage of computational techniques for missing data analysis

- Presents a rigorous treatment of imputation techniques, including multiple imputation fractional imputation

- Explores the most recent advances of the propensity score method and estimation techniques for nonignorable missing data

- Describes a survey sampling application

- Updated with a new chapter on Data Integration

- Now includes a chapter on Advanced Topics, including kernel ridge regression imputation and neural network model imputation

The book is primarily aimed at researchers and graduate students from statistics, and could be used as a reference by applied researchers with a good quantitative background. It includes many real data examples and simulated examples to help readers understand the methodologies.
Kim / Shao Statistical Methods for Handling Incomplete Data jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1. Introduction
2. Likelihood-based Approach
3. Computation
4. Imputation
5. Multiple Imputation
6. Fractional Imputation
7. Propensity Scoring Approach
8. Nonignorable Missing Data
9. Longitudinal and Clustered Data
10. Application to Survey Sampling
11. Data Integration
12. Advanced Topics


Jae Kwang Kim is a LAS dean’s professor in the Department of Statistics at Iowa State University. He is a fellow of American Statistical Association (ASA) and Institute of Mathematical Statistics (IMS). He is the recipient of 2015 Gertude M. Cox award, sponsored by Washington Statistical Society and RTI international.

Jun Shao is a professor in the Department of Statistics at University of Wisconsin – Madison. He is a fellow of ASA and IMS, a former president of International Chinese Statistical Association and currently the founding editor of Statistical Theory and Related Fields.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.