Kim / Nakatsu / Braunl | Progress in Robotics | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 44, 404 Seiten

Reihe: Communications in Computer and Information Science

Kim / Nakatsu / Braunl Progress in Robotics

FIRA RoboWorld Congress 2009, Incheon, Korea, August 16-20, 2009. Proceedings
1. Auflage 2009
ISBN: 978-3-642-03986-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

FIRA RoboWorld Congress 2009, Incheon, Korea, August 16-20, 2009. Proceedings

E-Book, Englisch, Band 44, 404 Seiten

Reihe: Communications in Computer and Information Science

ISBN: 978-3-642-03986-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This volume is a selection of papers of six international conferences that are held under the umbrella of the 12th FIRA RoboWorld congress, in Incheon, Korea, August 16-18, 2009. From the 115 contributed papers 44 papers are included in the volume, which is organized into 6 sections: humanoid robotics, human robot interaction, education and entertainment, cooperative robotics, robotic system design, and learning, optimization, communication. The volume is intended to provide readers with the recent technical progresses in robotics, human robot interactions, cooperative robotics and the related fields.

Kim / Nakatsu / Braunl Progress in Robotics jetzt bestellen!

Weitere Infos & Material


1;Title Page;2
2;Preface;5
3;Organization;6
4;Table of Contents;9
5;Humanoid Robotics;9
5.1;Time-Varying Affective Response for Humanoid Robots;13
5.1.1;Introduction;13
5.1.2;Related Work;13
5.1.3;Cognitive Basis of TAME;14
5.1.3.1;Overview;14
5.1.3.2;Psychological and Mathematical Foundations;15
5.1.4;Architectural Design and Implementation;19
5.1.5;References;20
5.2;The Co-simulation of Humanoid Robot Based on Solidworks, ADAMS and Simulink;22
5.2.1;Introduction;22
5.2.2;The Control System Model of Humanoid Robot;22
5.2.3;Humanoid Robot Model;23
5.2.3.1;Robot Reality;23
5.2.3.2;Entironment of Robot;25
5.2.3.3;Controller of Robot;25
5.2.4;The Motion Trajectory Planning of Humanoid Robot;26
5.2.5;The Design of Adaptive Controller of Humanoid Robot;27
5.2.6;The Simulation Example of Adaptive Controller;28
5.2.7;Conclusions;29
5.2.8;References;30
5.3;From RoboNova to HUBO: Platforms for Robot Dance;31
5.3.1;Introduction;31
5.3.2;Prior Work;32
5.3.3;Beat Predictor;32
5.3.4;Robot Platforms;33
5.3.5;Experiment;35
5.3.6;Future Work;35
5.3.7;Conclusion;36
5.3.8;References;36
5.4;BunnyBot: Humanoid Platform for Research and Teaching;37
5.4.1;Introduction;37
5.4.1.1;Purpose;37
5.4.1.2;Overview of BunnyBot;38
5.4.2;Distributed Processing;38
5.4.2.1;Mainboard Cluster;39
5.4.3;Sensors and Actuators;40
5.4.3.1;Novel Foot Pressure Sensor;40
5.4.3.2;Inertial Measurement Unit with Complementary Filter;41
5.4.3.3;Robust Gripper Design;43
5.4.4;Kinematic Model;43
5.4.5;Conclusion;44
5.4.6;References;44
5.5;Teen Sized Humanoid Robot: Archie;46
5.5.1;Introduction;46
5.5.2;Hardware Description;47
5.5.2.1;Modular Joint Design;47
5.5.2.2;Brush-Less Motor Controller;49
5.5.2.3;DC Motor Controller;49
5.5.2.4;Decentralized Controller;49
5.5.2.5;Spinal Processing Unit (SPU);50
5.5.2.6;Communication Protocol;51
5.5.2.7;Position Encoders on Start Up;51
5.5.2.8;Contact-Free Position Encoders for Brushless Motors;52
5.5.3;Conclusion;53
5.5.4;References;53
5.6;Interdisciplinary Construction and Implementation of a Human Sized Humanoid Robot by Master Students;54
5.6.1;Introduction;54
5.6.2;Management;55
5.6.3;Mechanical Construction;56
5.6.3.1;Kinematic and Inverse Dynamic Analyses;56
5.6.3.2;Force Torque Sensor (FTS);58
5.6.3.3;Constructions;59
5.6.4;Electrical Instrumentation and Modeling;59
5.6.4.1;Data Infrastructure;59
5.6.4.2;Program Structure;61
5.6.4.3;Modeling and Verification;61
5.6.5;Verification, Planning and Control;61
5.6.6;Educational Findings;62
5.6.7;Conclusion;62
5.6.8;References;63
6;Human Robot Interaction;9
6.1;Safety Aspects in a Human-Robot Interaction Scenario: A Human Worker Is Co-operating with an Industrial Robot;65
6.1.1;Introduction;65
6.1.2;Initial Situation, Objectives and Approach;66
6.1.3;Motivation;67
6.1.4;Setup Description;68
6.1.4.1;Hardware Setup;68
6.1.4.2;Assembly Product Description;69
6.1.5;Assembly Process;70
6.1.6;Safety Aspects;71
6.1.7;Conclusion and Outlook;73
6.1.8;References;73
6.2;Integration of a RFID System in a Social Robot;75
6.2.1;Introduction;75
6.2.2;Maggie: The Social Robot;76
6.2.2.1;Software Architecture;76
6.2.3;RFID Skills in a Social Robot;78
6.2.3.1;Hardware Requirements;78
6.2.3.2;Software Requirements;78
6.2.4;Software Architecture of RFID Skills;79
6.2.4.1;Reading Skill {\tt CRFID_ReadSkill};80
6.2.4.2;Writing {\tt Skill CRFID WriteSkill};80
6.2.5;Experimental Results;81
6.2.5.1;Tags Detection and Data Reception;81
6.2.5.2;Application of RFID Skills in the Social Robot Maggie: Medicines Recognition;82
6.2.6;Conclusions;83
6.2.7;References;83
6.3;A Practical Study on the Design of a User-Interface Robot Application;86
6.3.1;Introduction;86
6.3.2;Designing an RUI;87
6.3.2.1;Natural Interaction;87
6.3.2.2;Balancing Framework;88
6.3.2.3;Balance the Dimensions for an RUI;89
6.3.3;Case Stidies;91
6.3.3.1;Conversation Bot;91
6.3.3.2;Waiter Application;93
6.3.4;Discussion;95
6.3.5;Conclusion;96
6.3.6;References;96
6.4;Infrared Remote Control with a Social Robot;98
6.4.1;Introduction;98
6.4.1.1;Related Previous Works;99
6.4.1.2;Goals;100
6.4.2;Frame of the Work;100
6.4.2.1;Automatic-Deliberative Architecture;101
6.4.3;System Implementation;101
6.4.3.1;Human-Robot Interface;102
6.4.3.2;Robot-Appliance Interface;102
6.4.4;Integration in AD Architecture;103
6.4.5;Testing the System;105
6.4.6;Conclusions;105
6.4.7;References;106
6.5;BlogRobot: Mobile Terminal for Blog Browse Using Physical Representation;108
6.5.1;Introduction;108
6.5.2;Playback the Blog by a Robot;109
6.5.2.1;Effectiveness of a Robot and Gestures;109
6.5.3;Design Consideration of BlogRobot;109
6.5.3.1;Dynamic Content Generating by TENORI;110
6.5.3.2;System Configuration of TENORI;110
6.5.4;Implementation of BlogRobot;111
6.5.5;Add-Up;112
6.5.5.1;Future Work;112
6.5.6;References;113
6.6;An Exploratory Investigation into the Effects of Adaptation in Child-Robot Interaction;114
6.6.1;Introduction;114
6.6.2;Roball - The Robot;115
6.6.2.1;Distinguishing a Child’s Interaction;116
6.6.2.2;Interaction Modes;116
6.6.3;Experimental Approach and Settings;117
6.6.4;Analysis and Results;118
6.6.5;Conclusions;120
6.6.6;References;121
6.7;Devious Chatbots - Interactive Malware with a Plot;122
6.7.1;Introduction;122
6.7.2;A New Online Infection;123
6.7.3;Interactive Malware;123
6.7.4;Future Research;127
6.7.5;Conclusion;128
6.7.6;References;128
6.8;Towards Better Human Robot Interaction: Understand Human Computer Interaction in Social Gaming Using a Video-Enhanced Diary Method;131
6.8.1;Introduction;131
6.8.2;Video-Enhanced Diary Method;132
6.8.3;Experimental Results;135
6.8.3.1;Human Behavior Analysis;135
6.8.3.2;Gamer’s Decision Making Process;135
6.8.4;Future Directions and Conclusion;137
6.8.5;References;138
6.9;Promotion of Efficient Cooperation by Sharing Environment with an Agent Having a Body in Real World;140
6.9.1;Introduction;140
6.9.2;Real-World Based Interaction;141
6.9.3;Experiment;141
6.9.3.1;Participants and Task;142
6.9.3.2;Conditions;143
6.9.3.3;Hypothesis;143
6.9.3.4;Results;144
6.9.3.5;Consideration;144
6.9.4;Conclusion;145
6.9.5;References;145
6.10;Interaction Design for a Pet-Like Remote Control;146
6.10.1;Introduction;146
6.10.2;Pet-Like Remote Control Agent;147
6.10.2.1;Familiarity;147
6.10.2.2;Stroke Operation;148
6.10.3;TV Remote Agent;148
6.10.3.1;Stroke Operation;148
6.10.4;Discussions;150
6.10.5;Conclusion;150
6.10.6;References;151
6.11;Experiences with a Barista Robot, FusionBot;152
6.11.1;Introduction;152
6.11.2;FusionBot the Barista Robot;153
6.11.3;Software Architecture;154
6.11.3.1;Speech Recognition;154
6.11.3.2;Vision Understanding;155
6.11.3.3;Navigation Control;156
6.11.3.4;Smart Device Gateway;156
6.11.4;Experiment Setup;157
6.11.5;Results;158
6.11.5.1;Respondent Characteristics;158
6.11.5.2;Robot Experience;158
6.11.5.3;Satisfaction on Tasks;159
6.11.5.4;Suggestion/Comments on the FusionBot;160
6.11.6;Discussion and Conclusions;161
6.11.7;References;162
6.12;Mutually Augmented Cognition;164
6.12.1;Introduction;164
6.12.2;Challenge Scenarios;165
6.12.3;Mutually Augmented Cognition;166
6.12.3.1;Presentation of Cognitive Systems’ State;168
6.12.3.2;Online Analysis and Optimization of Human-Machine Interaction;168
6.12.3.3;Derivation of Knowledge and Learning from the Experience;168
6.12.3.4;Perception-Cognition-Action Loop;168
6.12.4;State of the Art;169
6.12.4.1;Computer Science / Plan-Based Control;169
6.12.4.2;Human Factors and Ergonomics;169
6.12.5;Preliminary Results;171
6.12.6;Conclusion and Outlook;171
6.12.7;References;172
6.13;How Humans Optimize Their Interaction with the Environment: The Impact of Action Context on Human Perception;174
6.13.1;Introduction;174
6.13.2;Experimental Paradigm;176
6.13.2.1;Participants;176
6.13.2.2;Stimuli and Apparatus;176
6.13.2.3;Procedure;178
6.13.2.4;Data Analysis;179
6.13.3;Results;179
6.13.4;Discussion;180
6.13.5;Implication for Robotics;182
6.13.6;Conclusions;183
6.13.7;References;184
6.14;Development of a Virtual Presence Sharing System Using a Telework Chair;185
6.14.1;Introduction;185
6.14.2;Avatar-Mediated Interaction;186
6.14.3;Presence Sharing System for a Telework: Ghatcha;187
6.14.3.1;Concept of the System;187
6.14.3.2;Development of the Prototype System Using CG;188
6.14.4;Evaluation of the Experiment;188
6.14.4.1;Experimental Setup;188
6.14.4.2;Sensory Evaluation;189
6.14.5;Consideration;190
6.14.6;Conclusion;190
6.14.7;References;190
6.15;PLEXIL-DL: Language and Runtime for Context-Aware Robot Behaviour;191
6.15.1;Introduction;191
6.15.2;Description Logic;192
6.15.3;PLEXIL;193
6.15.3.1;Semantics;193
6.15.4;PLEXIL-DL;194
6.15.4.1;Semantics;194
6.15.5;Runtime;195
6.15.6;Conclusions;197
6.15.7;References;197
6.16;Ambient Intelligence in a Smart Home for Energy Efficiency and Eldercare;199
6.16.1;Introduction;199
6.16.2;Energy Efficient Smart Home Technologies;200
6.16.3;Experiment Setup;201
6.16.4;Video Sensor Based Event Recognition;203
6.16.5;Audio Sensor Based Event Detection;203
6.16.6;Results;204
6.16.7;Conclusions;205
6.16.8;References;206
7;Education and Entertainment;10
7.1;Intelligent Technologies for Edutainment Using Multiple Robots;207
7.1.1;Introduction;207
7.1.2;Multiple Robots for Edutainment;208
7.1.2.1;Robot Edutainment;208
7.1.2.2;Mobile Robots;209
7.1.2.3;Human Interface;209
7.1.2.4;Intelligent Control of Mobile Robots;210
7.1.3;Experimental Results;211
7.1.3.1;Tele-operation of Soccer Robots;211
7.1.3.2;Tele-operation of Human-Like Robots;212
7.1.4;Summary;214
7.1.5;Reference;215
7.2;Remote Education Based on Robot Edutainment;216
7.2.1;Introduction;216
7.2.2;Robots Used for Edutainment;217
7.2.2.1;Android Receptionist Robot: SAYA;217
7.2.2.2;Partner Robots: MOBiMac;219
7.2.3;Remote Education System;220
7.2.3.1;Remote Control System;220
7.2.3.2;Lecture Mode for the Remote Education;222
7.2.3.3;Interaction Mode in the Remote Education;222
7.2.4;Experimental Results;223
7.2.5;Summary;224
7.2.6;References;224
7.3;Not Just “Teaching Robotics” but “Teaching through Robotics”;226
7.3.1;Introduction;226
7.3.2;Robots and Robotics - A Brief History;226
7.3.3;The UK National Curriculum - An Example Curriculum;227
7.3.4;Cross-Curriculum Teaching - Valuable Opportunity or Yet Another Set of Good Intentions ?;230
7.3.5;Attempts and Developments to Make Robotics, Computing, Modelling and Computer Game Programming and AI More Accessible - Cricket Logo, Arduino, Scratch;230
7.3.6;Examples and Suggestions for Teaching through Robotics Opportunities in a Range of Subjects;232
7.3.7;Robots and Teaching Those with Special Needs - Using Autism as an Example;233
7.3.8;References;234
7.4;A Proposal of Autonomous Robotic Systems Educative Environment;236
7.4.1;Introduction;236
7.4.2;Robots, Languages and Tools;238
7.4.3;Autonomous Toys, Programming Languages and Tools;239
7.4.4;An Application Case between Robots and Autonomous Toys;240
7.4.5;Autonomous Robot System Development Laboratory;241
7.4.6;Conclusions and Future Research Lines;242
7.4.7;References;242
7.5;Mechatronics Education: From Paper Design to Product Prototype Using LEGO NXT Parts;244
7.5.1;Introduction;244
7.5.2;Proposed Course Model;245
7.5.2.1;Design;245
7.5.2.2;Simulation;246
7.5.2.3;Control;246
7.5.2.4;Prototype;247
7.5.2.5;Testing and Evaluation;247
7.5.3;Case Study;248
7.5.3.1;Method/Theory;248
7.5.3.2;Experiment Setup;250
7.5.3.3;Results and Discussion;251
7.5.4;Conclusions;251
7.5.5;References;251
7.6;Fostering Development of Students’ Collective and Self-efficacy in Robotics Projects;252
7.6.1;Introduction;252
7.6.2;Collective and Self-efficacy;253
7.6.3;Pilot Study, 2006-2007;254
7.6.4;Primary Study, 2007-2008;255
7.6.5;Collective Efficacy;257
7.6.6;Conclusion;258
7.6.7;References;259
7.7;From an Idea to a Working Robot Prototype: Distributing Knowledge of Robotics through Science Museum Workshops;260
7.7.1;Introduction;260
7.7.2;Robotics Education in Science Museums;260
7.7.3;Learning Activities;261
7.7.4;Educational Study;262
7.7.5;Findings;263
7.7.5.1;Commitment to Team Success in Achieving the Common Goal;263
7.7.5.2;Collective Responsibility for Performing the Team Assignment;264
7.7.5.3;Inclination to Partnership within the Same Gender and Cultural Background;264
7.7.5.4;Pleasable Experience in the Museum Environment;264
7.7.5.5;Wish to Work Together and Make Collective Decisions;265
7.7.6;Conclusions;265
7.7.7;References;266
7.8;Teaching Electronics through Constructing Sensors and Operating Robots;267
7.8.1;Introduction;267
7.8.2;Didactical Principles of Teaching Mechatronics;268
7.8.3;Course Syllabus and Activities;269
7.8.4;Educational Study;270
7.8.5;Findings;271
7.8.6;Conclusion;273
7.8.7;References;273
7.9;Learning from Analogies between Robotic World and Natural Phenomena;274
7.9.1;Introduction;274
7.9.2;The Construction Kit;275
7.9.3;Modeling Natural Phenomena with PicoCricket;276
7.9.3.1;Heliotropism: A Sunflower Functional Model;276
7.9.3.2;Homeostasis of the Eye: An Iris Functional Model;278
7.9.4;Educational Study;279
7.9.5;Findings;280
7.9.6;Conclusion;281
7.9.7;References;281
7.10;Integrating Robot Design Competitions into the Curriculum and K-12 Outreach Activities;283
7.10.1;Introduction;283
7.10.2;Robot Design Competitions;284
7.10.2.1;Robo-Hoops Robot Competition;284
7.10.2.2;Firefighting Robot Competition;284
7.10.2.3;Mini Grand Challenge;285
7.10.3;Integration into Curriculum and K-12 Outreach Activities;286
7.10.4;Assessment of Robot Contests;287
7.10.5;Summary and Conclusions;289
7.10.6;References;290
7.11;Teamwork and Robot Competitions in the Undergraduate Program at the Copenhagen University College of Engineering;291
7.11.1;Introduction;291
7.11.2;Objectives of the Robot-Project;292
7.11.2.1;The Compulsory Task;292
7.11.2.2;Some Design Details;294
7.11.2.3;An Example of the Free Task Design;296
7.11.2.4;The Evaluations and the Competition;296
7.11.3;Conclusions;297
7.11.4;References;298
8;Cooperative Robotics;11
8.1;Multiagents System with Dynamic Box Change for MiroSot;299
8.1.1;Introduction;299
8.1.2;The Structure of the MAS for MiroSot;300
8.1.3;Dynamic Box Change of Identities of Agents and Their Existence;300
8.1.4;Action - "Total Defensive";301
8.1.5;Action - "Attack";304
8.1.6;Conclusion;304
8.1.7;References;304
8.2;Multi Block Localization of Multiple Robots;305
8.2.1;Introduction;305
8.2.2;Indoor Global-Localizaiton(IGS);306
8.2.2.1;iGS Basic Principle;306
8.2.2.2;Position Measurement;306
8.2.3;Localization of Multiple Robots;307
8.2.3.1;Localization of Multiple Robots;307
8.2.3.2;Master and Slave Method;308
8.2.3.3;Master and Slave Method;309
8.2.4;Simulation;310
8.2.5;Conclusion;311
8.2.6;References;311
8.3;Soty-Segment: Robust Color Patch Design to Lighting Condition Variation;312
8.3.1;Introduction;312
8.3.2;Previous Color Patch Designs;313
8.3.3;Soty-Segment Color Patch Design;314
8.3.3.1;Preprocessing;314
8.3.3.2;Algorithm of Color Patch Recognition;316
8.3.3.3;Color Demarcation;318
8.3.4;Experiments;318
8.3.4.1;Revision of Distortion;319
8.3.4.2;Color Patch Recognition;319
8.3.5;Conclusion;320
8.3.6;References;320
8.4;Task-Based Flocking Algorithm for Mobile Robot Cooperation;322
8.4.1;Introduction;322
8.4.2;Task-Based Flocking Algorithm;323
8.4.2.1;Task-Based Flocking Algorithm;323
8.4.2.2;Flocking Model;324
8.4.2.3;Task and Switching Criteria;326
8.4.2.4;Performance Feedback Criterion;327
8.4.3;Algorithm Analysis and Implement;327
8.4.3.1;Stability Analysis;327
8.4.3.2;Rule of Task;328
8.4.3.3;Algorithm Implement;329
8.4.4;Experiment;330
8.4.4.1;Experiment Setup;330
8.4.4.2;Experiment Results;330
8.4.5;Conclusion;332
8.4.6;References;332
8.5;Analysis of Spatially Limited Local Communication for Multi-Robot Foraging;334
8.5.1;Introduction;334
8.5.2;Concepts;335
8.5.2.1;Hardware Robots;335
8.5.2.2;Simulation;336
8.5.2.3;Landmark-Based Navigation;336
8.5.2.4;Communication;337
8.5.2.5;Program Concept;337
8.5.3;Evaluation Scenarios;338
8.5.4;Results;339
8.5.5;Conclusion;342
8.5.6;References;343
8.6;AMiRESot – A New Robot Soccer League with Autonomous Miniature Robots;344
8.6.1;Introduction;344
8.6.2;AMiRESot Rules;345
8.6.2.1;The Field of Play and the Ball;345
8.6.2.2;The Players;346
8.6.2.3;The Player’s Equipment;346
8.6.2.4;The Referee;347
8.6.2.5;Duration of the Match;347
8.6.2.6;Start and Restart of Play;348
8.6.2.7;The Ball In and Out of Play;348
8.6.2.8;Method of Scoring;348
8.6.2.9;Offside;349
8.6.2.10;Fouls and Misconduct;349
8.6.2.11;Free Kicks;349
8.6.3;Robot Platform;350
8.6.3.1;Robot Chassis;350
8.6.3.2;Robot Drive;351
8.6.3.3;Robot Sensors;351
8.6.3.4;Robot Information Processing;353
8.6.3.5;Software: Operating System and Simulation;354
8.6.4;Tournaments;354
8.6.5;Conclusion;356
8.6.6;References;356
9;Robotic System Design;12
9.1;BeBot: A Modular Mobile Miniature Robot Platform Supporting Hardware Reconfiguration and Multi-standard Communication;358
9.1.1;Introduction;358
9.1.2;Platform;359
9.1.3;Software Environment;361
9.1.4;Special Features;362
9.1.4.1;Wireless Communication;362
9.1.4.2;Dynamic Reconfiguration;363
9.1.5;Applications;364
9.1.5.1;Mechatronic Seminar;364
9.1.5.2;Image Processing Project;365
9.1.5.3;Research Project Guardians;365
9.1.6;Conclusion;367
9.1.7;References;367
9.2;System Design for Semi-automatic AndroSot;369
9.2.1;Introduction;369
9.2.1.1;Computer Vision;370
9.2.1.2;Strategy;370
9.2.1.3;Communication;370
9.2.1.4;Humanoid Robot;371
9.2.2;Computer Vision Subsystem;371
9.2.3;Strategy Subsystem;371
9.2.4;Communication Subsystem;372
9.2.4.1;PC Side Communication Module;372
9.2.4.2;Humanoid Robot Side Communication Module;373
9.2.5;Humanoid Robot;373
9.2.5.1;Main Feature of Humanoid Robot in the Market;373
9.2.5.2;Sensor for the Robot;374
9.2.6;Conclusion and Future Development;374
9.2.7;References;375
10;Learning, Optimization, Communication;12
10.1;Extended TA Algorithm for Adapting a Situation Ontology;376
10.1.1;Introduction;376
10.1.1.1;Ontology Based Situation Recognition;377
10.1.2;Definition of Situation Recognition Process;378
10.1.2.1;Situation-Aggregation-Tree (SAT);378
10.1.3;Basic Principle of TAA;379
10.1.3.1;Improvement;381
10.1.4;Conclusion;382
10.1.5;References;383
10.2;An Integer-Coded Chaotic Particle Swarm Optimization for Traveling Salesman Problem;384
10.2.1;Introduction;384
10.2.2;The Mathematical Model of TSP;385
10.2.2.1;General Mathematical Model;385
10.2.2.2;TSP Model Based on Permutation and Combination;386
10.2.3;ICPSO Algorithm for Solving TSP;386
10.2.3.1;Particle Encoding;386
10.2.3.2;Velocity-Position Model;386
10.2.3.3;The Definition of Fitness Function;388
10.2.3.4;The Solving Process of TSP Based on ICPSO;388
10.2.4;Simulation Experiment and Analysis;389
10.2.5;Conclusion;391
10.2.6;References;391
10.3;USAR Robot Communication Using ZigBee Technology;392
10.3.1;Introduction;392
10.3.2;Attenuation of RF Signal in Rubble;393
10.3.2.1;Link Margin for ZigBee Device;393
10.3.2.2;Link Margin for WiFi Access Point;393
10.3.3;WIFI versus ZIGBEE;393
10.3.4;Experiment Equipments;394
10.3.5;Soil Environment;395
10.3.6;Attenuation of Materials;395
10.3.7;Construction of Artificial Rubble;397
10.3.8;Data Routing Experiments;398
10.3.8.1;Experiment Setup;398
10.3.8.2;Monitoring Program;398
10.3.8.3;Experiment Description and Results;398
10.3.8.4;Routing Reconnection Tests;399
10.3.9;Conclusions;401
10.3.10;References;401
11;Author Index;403



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.