Kiguchi | Single-Molecule Electronics | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 239 Seiten, eBook

Kiguchi Single-Molecule Electronics

An Introduction to Synthesis, Measurement and Theory
1. Auflage 2016
ISBN: 978-981-10-0724-8
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

An Introduction to Synthesis, Measurement and Theory

E-Book, Englisch, 239 Seiten, eBook

ISBN: 978-981-10-0724-8
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents a multidisciplinary approach to single-molecule electronics. It includes a complete overview of the field, from the synthesis and design of molecular candidates to the prevalent experimental techniques, complemented by a detailed theoretical description. This all-inclusive strategy provides the reader with the much-needed perspective to fully understand the far-reaching ramifications of single-molecule electronics. In addition, a number of state-of-the-art topics are discussed, including single-molecule spectro-electrical methods, electrochemical DNA sequencing technology, and single-molecule chemical reactions. As a result of this integrative effort, this publication may be used as an introductory textbook to both graduate and advanced undergraduate students, as well as researchers with interests in single-molecule electronics, organic electronics, surface science, and nanoscience.  

Kiguchi Single-Molecule Electronics jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1;Preface;6
2;Contents;8
3;1 Molecular Electronics: A Brief Overview of the Status of the Field;9
3.1;1.1 Definition of Molecular Electronics;9
3.2;1.2 A Brief History;10
3.2.1;1.2.1 Molecular Monolayers: Langmuir-Blodgett Technique;10
3.2.2;1.2.2 Molecular Monolayers: Self-Assembly;12
3.2.3;1.2.3 Single Molecules;13
3.2.4;1.2.4 Present Status of the Field;14
3.3;1.3 Will Self-Assembled Molecular Circuits Replace Silicon?;17
3.4;1.4 Intrinsically Quantum;19
3.5;1.5 Challenges for Applications;20
3.6;1.6 Challenges for Fundamental Understanding;24
3.7;1.7 Outlook and Conclusions;25
3.8;References;26
4;2 Methods to Determine Electrical Conductance of Single-Molecule Junctions;32
4.1;2.1 Introduction;32
4.2;2.2 Mechanical Break Junction Method;33
4.2.1;2.2.1 Principle and Instruments for the Break Junction Method;33
4.2.1.1;2.2.1.1 Scanning Tunneling Microscope-Break Junction (STM-BJ);34
4.2.1.2;2.2.1.2 Mechanically Controllable Break Junction;39
4.2.2;2.2.2 Statistical Data Analysis;42
4.2.2.1;2.2.2.1 Distance and Conductance: Two-Dimensional Histogram;42
4.2.2.2;2.2.2.2 Cross Correlation and Conditional Histogram Analysis;44
4.2.3;2.2.3 Related Techniques;46
4.2.3.1;2.2.3.1 Distance Modulations;46
4.2.3.2;2.2.3.2 Electromechanical Responses;48
4.2.3.3;2.2.3.3 Electrical and Electrolyte Gating;50
4.3;2.3 Other Experimental Methods to Prepare Single-Molecule Junctions;54
4.3.1;2.3.1 Electromigration Technique;54
4.3.2;2.3.2 Ultrahigh-Vacuum and Low-Temperature Scanning Tunneling Microscope;57
4.4;2.4 Summary and Perspective;60
4.5;References;62
5;3 Characterization of the Single Molecular Junction;67
5.1;3.1 Introduction;67
5.1.1;3.1.1 Plateau Length Analysis;68
5.1.2;3.1.2 Point-Contact Spectroscopy and Inelastic Electron Tunneling Spectroscopy;71
5.1.3;3.1.3 Surface-Enhanced Raman Scattering;76
5.1.4;3.1.4 Current–Voltage Characteristics;79
5.1.5;3.1.5 Thermopower Measurement;82
5.1.6;3.1.6 Shot-Noise Measurement;83
5.1.7;3.1.7 Force Measurement;85
5.2;3.2 Summary and Future Perspective;88
5.3;References;90
6;4 Molecular Wires: An Overview of the Building Blocks of Molecular Electronics;92
6.1;4.1 Introduction;92
6.2;4.2 Saturated Hydrocarbon Wires;97
6.3;4.3 Oligo(enes) and Oligo(ynes);102
6.4;4.4 Oligo(arylenes);106
6.5;4.5 Oligo(phenylene ethynylenes) and Oligo(phenylene vinylenes);111
6.6;4.6 Summary and Outlook;115
6.7;References;116
7;5 Insulated Oligothiophenes;122
7.1;5.1 Introduction;122
7.2;5.2 Oligothiophenes with Bulky Silyl Substituents as Insulating Units;124
7.3;5.3 Completely Insulated Oligothiophenes with Anchor Units;127
7.4;5.4 Insulation-Tuned Oligothiophenes;133
7.5;5.5 Insulated Oligothiophenes with Hopping Conduction;137
7.6;5.6 Insulated Oligothiophenes with Electron-Affinity Characteristics;138
7.7;5.7 Summary;139
7.8;References;141
8;6 Synthesis and Physical Properties of Three-Dimensionally Insulated Molecular Wires;145
8.1;6.1 Introduction;145
8.2;6.2 Synthesis of Three-Dimensionally Insulated Molecular Wires;147
8.2.1;6.2.1 Synthesis of Cyclodextrin-Based Insulated Molecular Wires;147
8.2.2;6.2.2 Synthesis of Permethylated Cyclodextrin-Based Insulated Molecular Wires;149
8.2.3;6.2.3 Synthesis of Insulated Molecular Wires with High Charge Mobility;151
8.2.4;6.2.4 Synthesis of Functionalized Insulated Molecular Wires;153
8.2.5;6.2.5 Synthesis of Insulated Metallopolymers;155
8.2.5.1;6.2.5.1 Synthesis of Solid-State Phosphorescence Insulated Metallopolymers;157
8.2.5.2;6.2.5.2 Synthesis of One-Dimensional Insulated Coordination Polymers;159
8.3;6.3 The Establishment of Wiring Methods Utilizing Organic Reactions Between Nanosized Gaps;161
8.4;6.4 Summary and Conclusions;164
8.5;References;166
9;7 Orbital Rule for Electron Transport of Molecular Junctions;169
9.1;7.1 Introduction;169
9.2;7.2 Tight-Binding Model for Molecular Junctions;171
9.2.1;7.2.1 Two-Site Model;174
9.2.2;7.2.2 Three-Site (Triangular) Model;179
9.2.3;7.2.3 Orbital Rule from Experimental Observations;183
9.2.4;7.2.4 Spin-Dependent Transport in Molecular Spin Junctions;184
9.2.4.1;7.2.4.1 Coherent Approach for the Spin-Flip Process;187
9.2.4.2;7.2.4.2 Incoherent Approach for the Spin-Flip Process;191
9.3;7.3 Summary;192
9.4;References;193
10;8 Theoretical Aspects of Quantum Transport and Computational Modeling of Molecular Electronic Device;195
10.1;8.1 Introduction;195
10.2;8.2 Theory of Electric Transport in Molecular Junctions;196
10.2.1;8.2.1 Length Dependence of Conductance and Charge Migration Mechanisms;198
10.2.2;8.2.2 Universal Temperature Dependence Crossover and Inelastic Scattering Effect by Electron-Vibron Interaction;202
10.2.3;8.2.3 MO Engineering and Contact Chemistry via First-Principles Calculations;205
10.3;8.3 Rectification by a Single pn Molecule with Symmetric Anchors and Electrodes: Aviram-Ratner or Ellenbogen-Love Diode?;211
10.4;8.4 Summary;215
10.5;References;216
11;9 Single-Molecule Sequencing;221
11.1;9.1 Introduction;221
11.2;9.2 DNA Structures;223
11.3;9.3 The Principle of Single-Molecule Sequencing;224
11.4;9.4 Measurement and Analysis Methods;226
11.5;9.5 Single-Molecule Identification of Base Molecules;228
11.6;9.6 DNA Sequencing;230
11.7;9.7 RNA Sequencing;231
11.8;9.8 Peptide Sequencing;232
11.9;9.9 Perspective;237
11.10;References;238


Prof. Manabu Kiguchi
Department of Chemistry,
Graduate School of Science and Engineering,
Tokyo Institute of Technology,
Tokyo,JAPAN



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.