E-Book, Englisch, 258 Seiten, eBook
Reihe: Trends in Mathematics
Kielanowski / Odzijewicz / Previato Geometric Methods in Physics XXXVII
1. Auflage 2019
ISBN: 978-3-030-34072-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Workshop and Summer School, Bialowieza, Poland, 2018
E-Book, Englisch, 258 Seiten, eBook
Reihe: Trends in Mathematics
ISBN: 978-3-030-34072-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Preface.- In Memoriam Bogdan Mielnik.- Some aspects of the work of Daniel Sternheimer.- On canonical parametrization of phase spaces of Isomonodromic Deformation Equations.- On some deformations of the Poisson structure associated with the algebroid bracket of differential forms.- Generation of Painlevé V transcendents.- Hamiltonian Dynamics for the Kepler Problem in a Deformed Phase Space.- Notes on integrable motion of two interacting curves and two-layer generalized Heisenberg ferromagnet equations.- About the solutions to the Witten–Dijkgraaf–Verlinde–Verlinde associativity equations and their Lie-algebraic and geometric properties.- 2+2-Moulton Configuration – rigid and flexible.- Melnikov functions in the rigid body dynamics.- E(2)-covariant integral quantization of the motion on the circle and its classical limit.- On Deformation Quantization using Super Twistorial Double Fibration.- Deformation Quantization of Commutative Families and Vector Fields.- Co-Toeplitz Quantization: A Simple Case.- On the quantum flag manifold SUq(3)/T2.- A Hopf algebra without a modular pair in involution.- Hopf–Rinow theorem in Grassmann manifolds of C*-algebras.- Short geodesics for Ad invariant metrics in locally exponential Lie groups.- On Conjugacy of Subalgebras of Graph C*-Algebras.- A Direct Proof for an Eigenvalue Problem by Counting Lagrangian Submanifolds.- Applications of the Fundamental Theorems of Projective and Affine Geometry in Physics.- Modeling the dynamics of a charged drop of a viscous liquid.- The orthogonal systems of functions on lattices of SU(n + 1), n < 8.- The Super Orbit Challenge.- Weighted generalization of the Szegö kernel and how it can be used to prove general theorems of complex analysis.- Amenability, flatness and measure algebras.- Functional Analysis techniques in Optimization and Metrization problems.- Twistor Geometry and Gauge Fields.- Quantum Dirichlet formsand their recent applications.- Lagrangian approach to Geometric Quantization.