Buch, Englisch, Band 71, 289 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 625 g
Reihe: Progress in Nonlinear Differential Equations and Their Applications
Applications to Geometry, Cosmology and Mathematical Physics
Buch, Englisch, Band 71, 289 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 625 g
Reihe: Progress in Nonlinear Differential Equations and Their Applications
ISBN: 978-0-8176-4352-2
Verlag: Birkhäuser
This work unfolds systematically in four parts, interweaving theory and applications. The case studies examined in Part III illustrate the impact of reduction techniques, and may serve as prototypes for future new applications. In the same spirit, most chapters include a problem section. Background results and solutions to selected problems close the volume.
This book can be used as a text in graduate courses in pure or applied analysis, or as a resource for researchers working with singularities in geometry and mathematical physics.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Geometrie Nicht-Euklidische Geometrie
- Naturwissenschaften Astronomie Astrophysik
- Naturwissenschaften Astronomie Galaxien und Sterne
- Naturwissenschaften Physik Angewandte Physik Astrophysik
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Naturwissenschaften Physik Quantenphysik Relativität, Gravitation
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Naturwissenschaften Astronomie Kosmologie, Urknalltheorie
- Naturwissenschaften Astronomie Raumfahrt
Weitere Infos & Material
Fuchsian Reduction.- Formal Series.- General Reduction Methods.- Theory of Fuchsian Partial Di?erential Equations.- Convergent Series Solutions of Fuchsian Initial-Value Problems.- Fuchsian Initial-Value Problems in Sobolev Spaces.- Solution of Fuchsian Elliptic Boundary-Value Problems.- Applications.- Applications in Astronomy.- Applications in General Relativity.- Applications in Differential Geometry.- Applications to Nonlinear Waves.- Boundary Blowup for Nonlinear Elliptic Equations.- Background Results.- Distance Function and Hölder Spaces.- Nash–Moser Inverse Function Theorem.