Buch, Englisch, Band 123, 252 Seiten, Format (B × H): 160 mm x 240 mm, Gewicht: 1230 g
Applications to Obstacle and Unilateral Problems
Buch, Englisch, Band 123, 252 Seiten, Format (B × H): 160 mm x 240 mm, Gewicht: 1230 g
Reihe: Applied Mathematical Sciences
ISBN: 978-0-387-94886-7
Verlag: Springer
Bifurcation Problems for Variational Inequalities presents an up-to-date and unified treatment of bifurcation theory for variational inequalities in reflexive spaces and the use of the theory in a variety of applications, such as: obstacle problems from elasticity theory, unilateral problems; torsion problems; equations from fluid mechanics and quasilinear elliptic partial differential equations. The tools employed are the tools of modern nonlinear analysis. This book is accessible to graduate students and researchers who work in nonlinear analysis, nonlinear partial differential equations, and additional research disciplines that use nonlinear mathematics.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Elementare Analysis und Allgemeine Begriffe
- Naturwissenschaften Physik Physik Allgemein Experimentalphysik
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Naturwissenschaften Physik Mechanik Klassische Mechanik, Newtonsche Mechanik
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Naturwissenschaften Physik Physik Allgemein Geschichte der Physik
- Naturwissenschaften Biowissenschaften Angewandte Biologie Biomathematik
Weitere Infos & Material
Contents: Introduction.- Some Auxiliary results.- Variational inequalities defined on convex sets in Hilbert spaces: Homogenization procedures.- Degree calculations - The Hilbert Space case.- Bifurcation from infinity in Hilbert spaces.- Bifurcation in Banach spaces.- Bifurcation from infinity in Banach spaces.- Bibliography.- Index.