E-Book, Englisch, Band 83, 315 Seiten
Khan Recent Trends in Nanomaterials
1. Auflage 2017
ISBN: 978-981-10-3842-6
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Synthesis and Properties
E-Book, Englisch, Band 83, 315 Seiten
Reihe: Advanced Structured Materials
ISBN: 978-981-10-3842-6
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book focuses on the latest advances in the field of nanomaterials synthesis and processes, and provides a comprehensive overview of the state of art of research in this rapidly developing field. The book is divided into 11 chapters on various aspects of nanomaterials, moving from the synthesis and characterization of graphene oxide to graphene quantum dots and other interesting nanomaterials. Some chapters based on theoretical simulation of nanomaterials and their properties and applications of nanomaterials have also presented in this book. Given the depth and breadth of coverage, the book offers a valuable guide for researchers and students working in the area of nanomaterials.
Dr. Zishan Husain Khan, Professor at the Department of Applied Sciences & Humanities, Faculty of Engineering & Technology, Jamia Millia Islamia (Central University), New Delhi, has been working in the field of nanotechnology since December 2001. He has almost 20 years of research experience in semiconductor physics and nanotechnology. He has published more than 102 research papers in reputed international journals and has guided a number of PhD students. He has presented many research papers in various national and international conferences. He has completed several research projects on various topics in nanotechnology. He has worked at several positions in universities abroad. In 2001, Dr. Khan was selected for pursuing postdoctoral research in nanotechnology at the Center of Nanoscience and Nanotechnology, National Tsing Hua University (NTHU), Hsinchu, Taiwan. He joined this research program in December 2001 and completed it in February 2005. During his postdoctoral fellowship, he worked on different aspects of nanomaterials with special emphasis on carbon nanotubes (CNTs). His work on current-voltage (I-V) characteristics of individual CNTs for CNT-based field effect transistor (FET) was highly appreciated by the scientific community. To carry out this research work, he employed the technique of photolithography to design a mask and subsequently used e-beam lithography to connect an individual CNT to fabricate a nanodevice.With this significant experience in nanotechnology, Dr. Khan was selected to establish a Center of Nanotechnology at King Abdul Aziz University, Jeddah, Saudi Arabia in 2007. Dr. Khan worked as an Associate Professor at this Center until July 2012. During his stay there, he established world-class facilities in nanotechnology with a cleanroom of level 100. He was also actively involved in designing various courses in nanotechnology. He also acted as a reviewer for many international journals of high repute. In addition, he has edited several special issues for reputed international journals. Dr. Khan has edited two books entitled 'Recent Trends in Nanotechnology & Renewable Energy' published by Bharti Publications, Delhi (India) and 'Advances in Nanomaterials' published by Springer.
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;6
2;Acknowledgements;8
3;Contents;10
4;About the Editor;12
5;1 Graphene Oxide: Synthesis and Characterization;14
5.1;1.1 Introduction;14
5.2;1.2 Synthesis of Graphene Oxide/Reduced Graphene Oxide;17
5.2.1;1.2.1 Oxidation of Graphite;17
5.2.1.1;1.2.1.1 Broodie’s Method;18
5.2.1.2;1.2.1.2 Hummer’s Method;18
5.2.1.3;1.2.1.3 Tour’s Method;19
5.2.2;1.2.2 Exfoliation of Graphene Oxide;19
5.2.2.1;1.2.2.1 Chemical Exfoliation of Graphene Oxide;19
5.2.2.2;1.2.2.2 Thermal Exfoliation of Graphene Oxide;20
5.2.3;1.2.3 Reduction of Graphene Oxide;20
5.2.3.1;1.2.3.1 Thermal Annealing;22
5.2.3.2;1.2.3.2 Reduction Using High-Energy Radiations;23
5.2.3.3;1.2.3.3 Chemical Reduction of Graphene Oxide;24
5.3;1.3 Characterizations of Graphene Oxide;27
5.4;1.4 Conclusion;35
5.5;References;35
6;2 Wear Behavior of Composites and Nanocomposites: A New Approach;42
6.1;2.1 Wear;42
6.2;2.2 Types of Wear;42
6.2.1;2.2.1 Adhesive Wear;43
6.2.2;2.2.2 Abrasive Wear;44
6.2.3;2.2.3 Corrosive Wear;47
6.2.4;2.2.4 Fatigue Wear;48
6.2.4.1;2.2.4.1 Rolling Contact;48
6.2.4.2;2.2.4.2 Sliding Contact;49
6.3;2.3 Analysis of Wear Debris;49
6.4;2.4 Composites and Nanocomposites;50
6.4.1;2.4.1 Classification of Composites;51
6.4.1.1;2.4.1.1 Polymer Matrix Composites (PMCs);51
6.4.1.2;2.4.1.2 Metal Matrix Composites (MMCs);52
6.4.1.3;2.4.1.3 Ceramic Matrix Composites (CMCs);53
6.4.2;2.4.2 Advantages of Composites;53
6.4.3;2.4.3 Limitations of Composites;54
6.5;2.5 Wear of Metals, Ceramics and Polymers;54
6.5.1;2.5.1 Wear of Metals;54
6.5.2;2.5.2 Wear of Ceramics;56
6.5.3;2.5.3 Wear of Polymers;57
6.6;2.6 Factors Affecting Reduction of Wear;58
6.7;2.7 Wear Behavior of Fe–Al2O3 Metal Matrix Nanocomposites;58
6.8;References;60
7;3 Nanoparticles as Targeted Drug Delivery Agents: Synthesis, Mechanism and Applications;62
7.1;3.1 Introduction;62
7.2;3.2 Targeted Drug Delivery;63
7.3;3.3 Significance of Nanoparticles in Drug Delivery;64
7.4;3.4 Nanoparticle-Based Drug Delivery Platforms;65
7.4.1;3.4.1 Liposomes;65
7.4.2;3.4.2 Dendrimers;66
7.4.3;3.4.3 Magnetic Nanoparticles;67
7.4.4;3.4.4 Hydrogels;67
7.4.5;3.4.5 Polymeric Micelles;68
7.4.6;3.4.6 Gold Nanoparticles;69
7.5;3.5 Applications of Nanoparticles in Drug Delivery;69
7.6;3.6 Conclusions;73
7.7;Acknowledgements;74
7.8;References;74
8;4 Synthesis, Characterization and Applications of Graphene Quantum Dots;77
8.1;4.1 Introduction;77
8.2;4.2 Properties;77
8.2.1;4.2.1 Optical Properties;77
8.2.1.1;4.2.1.1 Photoluminescence;77
8.2.1.2;4.2.1.2 Up-conversion;80
8.2.1.3;4.2.1.3 Electrochemical Luminescence;83
8.2.1.4;4.2.1.4 Cytotoxicity;85
8.3;4.3 Characterization;86
8.3.1;4.3.1 Optical Characterization;87
8.3.1.1;4.3.1.1 UV–Visible Spectroscopy;87
8.3.1.2;4.3.1.2 Raman Spectroscopy;87
8.3.1.3;4.3.1.3 Photoluminescence Spectroscopy;87
8.3.2;4.3.2 Microscopy Characterization;88
8.3.2.1;4.3.2.1 Transmission Electron Microscopy (TEM);88
8.3.2.2;4.3.2.2 Atomic Force Microscopy (AFM);88
8.3.3;4.3.3 Surface State Characterization;90
8.3.3.1;4.3.3.1 Fourier Transform Infrared Spectrometer (FT-IR);90
8.3.3.2;4.3.3.2 X-ray Photoelectron Spectroscopy (XPS);91
8.4;4.4 Synthesis;91
8.4.1;4.4.1 Top-Down Approach;91
8.4.1.1;4.4.1.1 Chemical Ablation Methods;91
8.4.1.2;4.4.1.2 Electrochemical Method;94
8.4.1.3;4.4.1.3 Physical Method;97
8.4.2;4.4.2 Bottom-Up Approach;97
8.4.2.1;4.4.2.1 Cage Opening of Fullerene;97
8.4.2.2;4.4.2.2 GQDs Derived from Organic Molecules;99
8.5;4.5 Applications;101
8.5.1;4.5.1 Bioimaging or Biolabelling;101
8.5.2;4.5.2 Biosensing;103
8.5.3;4.5.3 Immunosensing;103
8.5.4;4.5.4 Drug Delivery;103
8.5.5;4.5.5 Light-Emitting Diode;107
8.5.6;4.5.6 Sensors;109
8.5.7;4.5.7 Photoluminescence (PL) Sensor;109
8.5.8;4.5.8 Electrochemical (EC) Sensor;111
8.5.9;4.5.9 Electrochemiluminescence (ECL) Sensor;113
8.5.10;4.5.10 Catalysis;116
8.5.10.1;4.5.10.1 Electrocatalysis—Oxygen Reduction Reaction (ORR) in Fuel Cells;116
8.5.10.2;4.5.10.2 Photocatalysis;120
8.5.10.3;4.5.10.3 Energy-Related Application;121
8.5.10.3.1;Photovoltaics (PV);121
8.6;4.6 Prospect of GQDs;122
8.7;References;122
9;5 Graphene/Metal Nanowire Hybrid Transparent Conductive Films;133
9.1;5.1 Introduction;133
9.2;5.2 Graphene-Based Transparent Conductive Films;135
9.3;5.3 Metal Nanowire-Based Transparent Conductive Films;138
9.4;5.4 RG-O/Cu NW Hybrid Transparent Conductive Films;140
9.5;5.5 CVD-Graphene/Metal Nanowire Hybrid Transparent Conductive Films;143
9.6;5.6 Applications of Graphene/Metal Nanowire Hybrid Films;147
9.6.1;5.6.1 Application of RG-O/Cu NW Transparent Electrodes in EC Devices;147
9.6.2;5.6.2 Application of CVD-Graphene/Ag NW Transparent Electrodes in EC Devices;150
9.7;5.7 Conclusions and Future Challenges;151
9.8;Acknowledgements;152
9.9;References;152
10;6 Antibacterial Applications of Nanomaterials;155
10.1;6.1 Introduction;155
10.2;6.2 Mechanism of Antibacterial Action;157
10.3;6.3 Synthesis Procedure;158
10.4;6.4 Antibacterial Test Protocols;159
10.5;6.5 Antimicrobial Activity of Pure and Doped ZnO;159
10.5.1;6.5.1 Effect of Doping on Minimum Inhibitory Concentration (MIC);160
10.5.2;6.5.2 Effect of Doping on Zone of Inhibition (ZOI);162
10.5.3;6.5.3 Growth of Bacterial Cells in Presence of Co-doped ZnO;164
10.6;6.6 Bacterial Biofilm;165
10.6.1;6.6.1 Inhibition of Microbial Biofilm Using Nanoantibiotic;166
10.7;6.7 Summary;167
10.8;References;167
11;7 Facile Synthesis of Large Surface Area Graphene and Its Applications;171
11.1;7.1 Introduction;171
11.2;7.2 Conclusions;183
11.3;Acknowledgements;184
11.4;References;184
12;8 Carbon Nanomaterials Derived from Graphene and Graphene Oxide Nanosheets;188
12.1;8.1 Brief Introduction;188
12.2;8.2 Graphene Fibers (1D);189
12.2.1;8.2.1 Solution Processing from Graphene Oxide (GO);189
12.2.2;8.2.2 Hydrothermal Approach;195
12.2.3;8.2.3 Chemical Vapor Deposition (CVD);198
12.2.4;8.2.4 Graphene Ribbon Fibers from Unzipped CNTs;200
12.2.5;8.2.5 Other Methods;202
12.3;8.3 Graphene-Based Free-Standing Papers (2D);203
12.3.1;8.3.1 Membrane Vacuum Filtration;204
12.3.2;8.3.2 Other Methods;209
12.3.2.1;8.3.2.1 Solvent Direct Evaporation;209
12.3.2.2;8.3.2.2 Tape Casting;210
12.3.2.3;8.3.2.3 Electro-spray Deposition;213
12.3.2.4;8.3.2.4 Interface Self-Assembly;214
12.3.2.5;8.3.2.5 Chemical Vapor Deposition (CVD);216
12.4;8.4 Graphene 3D Monoliths;217
12.4.1;8.4.1 Solution Processes;217
12.4.1.1;8.4.1.1 Gelation of GO;217
12.4.1.2;8.4.1.2 Centrifugal Evaporation-Induced Assembly of GO;224
12.4.1.3;8.4.1.3 In Situ Gelation of RGO;225
12.4.1.3.1;Hydrothermal Reduction in GO;226
12.4.1.3.2;Chemical Reduction in GO;228
12.4.2;8.4.2 Interface Self-Assembly;233
12.4.2.1;8.4.2.1 Breath-Figure-Templated Assembly;233
12.4.2.2;8.4.2.2 Flow-Directed Self-Assembly;235
12.4.2.2.1;Leavening Strategy;235
12.4.2.2.2;KOH Activation of RGO Porous Structures;236
12.4.3;8.4.3 Templating Approaches;237
12.4.3.1;8.4.3.1 Templated Chemical Vapor Deposition (CVD);237
12.4.3.2;8.4.3.2 Ice-Templated Unidirectional Freezing;238
12.4.4;8.4.4 3D Printing;239
12.4.5;8.4.5 Miscellaneous;240
12.5;8.5 Concluding Remarks;242
12.6;References;242
13;9 GaN Nanowall Network: Laser Assisted Molecular Beam Epitaxy Growth and Properties;255
13.1;9.1 Introduction;255
13.2;9.2 Growth of GaN Nanowall Network by LMBE Technique;257
13.3;9.3 Characterization of GaN Nanowall Network Grown by LMBE Technique;258
13.4;9.4 Properties of Homoepitaxial GaN Nanowall Network Grown on GaN Template;259
13.4.1;9.4.1 Structural Properties;259
13.4.2;9.4.2 Optical Properties;265
13.4.3;9.4.3 Electronic Structure;268
13.4.4;9.4.4 Effect of Wet-Etching;271
13.5;9.5 Properties of Heteroepitaxial GaN Nanowall Network Grown on Sapphire (0001);273
13.6;9.6 Concluding Remarks and Future Perspective;274
13.7;Acknowledgements;275
13.8;References;275
14;10 Density Functional Theory (DFT) Study of Novel 2D and 3D Materials;279
14.1;10.1 Introduction;279
14.2;10.2 The Method of Calculations;281
14.3;10.3 Results and Discussion;281
14.3.1;10.3.1 Diluted Magnetic Semiconductors (DMSs);281
14.3.2;10.3.2 Semiconductor and Metal Interface;284
14.3.3;10.3.3 Effects of Tantalum Incorporation into Diamond Films;287
14.3.4;10.3.4 Effects of Oxygen Incorporation into Diamond Films;288
14.4;10.4 Summary;289
14.5;References;290
15;11 Prospects of Nanostructured ZrO2 as a Point-of-Care Diagnostics;295
15.1;11.1 Introduction;295
15.2;11.2 Synthesis and Characterizations of ZrO2 Nanostructures;298
15.3;11.3 Biological Properties of ZrO2;302
15.4;11.4 ZrO2-Based Biosensors;303
15.4.1;11.4.1 ZrO2-Based Immunosensors;303
15.4.2;11.4.2 Enzymatic Biosensor;306
15.4.3;11.4.3 DNA Biosensor;309
15.5;11.5 Conclusions;311
15.6;References;312




