E-Book, Englisch, Band 84, 328 Seiten
Khan Nanomaterials and Their Applications
1. Auflage 2018
ISBN: 978-981-10-6214-8
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 84, 328 Seiten
Reihe: Advanced Structured Materials
ISBN: 978-981-10-6214-8
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book focuses on the latest advances in the field of nanomaterials and their applications, and provides a comprehensive overview of the state-of-the-art of research in this rapidly developing field. The book comprises chapters exploring various aspects of nanomaterials. Given the depth and breadth of coverage, the book offers a valuable guide for researchers and students working in the area of nanomaterials.
Dr. Zishan Husain Khan is an Associate Professor (Applied Physics) at the Department of Applied Sciences & Humanities, Faculty of Engineering & Technology, Jamia Millia Islamia University, New Delhi, India. He specializes in nanotechnology with special emphasis on carbon nanotubes, semiconducting nanostructures and nanochalcogenides. His work on the fabrication of a field-effect transistor (FET) based on an individual carbon nanotube using e-beam lithography and its I-V characteristics was significant. He has also studied the electrical transport properties and field emission properties of bulk carbon nanotubes and has contributed to the field of oxide semiconductors and synthesized zinc oxide (ZnO) nanostructures for various applications.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Acknowledgements;10
3;Contents;12
4;About the Editor;14
5;1 Nanodiamonds: Synthesis and Applications;15
5.1;Abstract;15
5.2;1.1 Introduction;15
5.3;1.2 Synthesis of Nanodiamond;16
5.3.1;1.2.1 Detonation Techniques;16
5.3.2;1.2.2 Synthesis of Nanodiamond by CVD;20
5.3.3;1.2.3 High Energy Milling of Microsized Diamond Particles;23
5.3.4;1.2.4 Laser Assisted Synthesis of Nanodiamond;23
5.3.5;1.2.5 Synthesis of Nanodiamonds Using High Energy Particles Irradiation;26
5.3.6;1.2.6 Ultrasound Assisted Synthesis of Nanodiamonds;26
5.3.7;1.2.7 Synthesis of Nanodiamonds Using Carbides;27
5.4;1.3 Applications of Nanodiamonds;29
5.4.1;1.3.1 Polishing and Lubrication;29
5.4.2;1.3.2 Nanodiamond Nanocomposites;30
5.4.3;1.3.3 Bio-medical Applications;31
5.5;1.4 Nitrogen Vacancy Centers (NV Centres) in Nanodiamonds and Their Applications in Bio-imaging;32
5.6;1.5 Conclusion;34
5.7;References;35
6;2 Carbon Nanowalls: A Potential 2-Dimensional Material for Field Emission and Energy-Related Applications;41
6.1;Abstract;41
6.2;2.1 Introduction;42
6.2.1;2.1.1 Carbon Nanostructures: An Overview;42
6.2.2;2.1.2 Structural Properties;44
6.2.2.1;2.1.2.1 Bonding Configuration of Carbon Atoms;44
6.2.2.2;2.1.2.2 Single-Walled Nanotubes;45
6.2.2.3;2.1.2.3 Multi-walled Nanotubes;47
6.2.2.4;2.1.2.4 Carbon Nanowalls;47
6.3;2.2 Growth of Carbon Nanowalls;49
6.3.1;2.2.1 Main Approaches for the Growth of CNWs and Current Status;49
6.3.1.1;2.2.1.1 Microwave Plasma-Enhanced CVD (MPEVCD) Method;49
6.3.1.2;2.2.1.2 Effect of Microwave Power (Density and Dimensions);50
6.3.1.3;2.2.1.3 Effect of Catalyst and Nature of Substrates;54
6.3.2;2.2.2 Growth of Carbon Nanowalls by Rf-PECVD;58
6.4;2.3 Characterization of CNWs;61
6.4.1;2.3.1 CNW Structure by HR-TEM;61
6.4.2;2.3.2 CNWs Structure by Raman Spectroscopy;61
6.5;2.4 Growth Mechanisms of CNWs;62
6.6;2.5 Field Emission Properties of Carbon Nanowalls;66
6.6.1;2.5.1 Field Emission;66
6.6.2;2.5.2 Field Emission Properties of Carbon Nanowalls;68
6.6.3;2.5.3 Field Emission Measurement Setup;68
6.6.3.1;2.5.3.1 Field Emission Characteristics of CNW-Based Carbon Films;70
6.6.3.2;2.5.3.2 Effect of Catalyst–Substrate Interaction on the Field Emission;70
6.6.3.3;2.5.3.3 Effect of Microwave Power (Density and Dimensions of CNWs);72
6.6.3.4;2.5.3.4 Effect of Temperature on the FE Properties of CNWs;73
6.6.3.5;2.5.3.5 Effect of Different Gas Environments for FE of CNWs;74
6.7;2.6 Carbon Nanowalls for Energy-Related Applications;75
6.7.1;2.6.1 As Effective Electrodes in Lithium-Ion Batteries;75
6.7.2;2.6.2 As Catalyst Supports in Fuel Cells;76
6.7.3;2.6.3 CNWs in Solar Cells;77
6.8;2.7 Conclusions and Future Prospects;78
6.9;References;79
7;3 Role of Nanostructured Materials Toward Remediation of Heavy Metals/Metalloids;86
7.1;Abstract;86
7.2;3.1 Introduction;86
7.3;3.2 Heavy Metals/Metalloids and Their Sources;88
7.4;3.3 Effects of Heavy Metals/Metalloid in Human Health;89
7.5;3.4 Nanomaterials as Adsorbent for Heavy Metals/Metalloids;92
7.5.1;3.4.1 Carbon-Based Nanomaterials;92
7.5.2;3.4.2 Nanosized Metal and Metal Oxides;94
7.5.2.1;3.4.2.1 Iron-Based Nanoparticles as Nanoadsorbents for Heavy Metals;96
7.5.2.2;3.4.2.2 Nanosized Titanium Oxides;98
7.5.2.3;3.4.2.3 Nanosized Cerium Oxides;99
7.5.2.4;3.4.2.4 Nanosized Magnesium Oxides;100
7.5.2.5;3.4.2.5 Nanosized Aluminum Oxides;100
7.6;3.5 Polymer and Amino Acid Supported Nanomaterials for Heavy Metals/Metalloid;102
7.7;3.6 Conclusion;103
7.8;References;103
8;4 Recent Trends in the Processing and Applications of Carbon Nanotubes and C-MEMS-Based Carbon Nanowires;109
8.1;Abstract;109
8.2;4.1 Introduction;110
8.3;4.2 CNT Processings;111
8.3.1;4.2.1 Arc Discharge Method;112
8.3.2;4.2.2 Laser Ablation Method;116
8.3.3;4.2.3 CVD Method;119
8.4;4.3 Applications of CNTs;124
8.4.1;4.3.1 Gas Sensors;124
8.4.2;4.3.2 Biosensors;128
8.4.3;4.3.3 Optical Sensors;130
8.4.4;4.3.4 Microelectronics;130
8.4.5;4.3.5 Supercapacitors;133
8.4.6;4.3.6 Mechanical Properties of Measurements;133
8.4.7;4.3.7 Carbon Electrodes;136
8.5;4.4 Carbon-MEMS/NEMS;138
8.5.1;4.4.1 Supporting Structure Fabrication for CNWs;140
8.5.2;4.4.2 Electrospinning for Polymer Fibers;140
8.5.2.1;4.4.2.1 Electrospinning Setup Description;140
8.5.2.2;4.4.2.2 Dimensions of the Nanowires;141
8.5.3;4.4.3 Setup Description of EMS;144
8.5.4;4.4.4 Various Research Works on C-MEMS CNWs;145
8.6;4.5 Applications of C-MEMS-Based CNWs;147
8.7;References;149
9;5 Metal Nanoparticles as Glucose Sensor;154
9.1;Abstract;154
9.2;5.1 Introduction;155
9.3;5.2 Silver Nanoparticles-Based Glucose Sensor;156
9.4;5.3 Gold Nanoparticles as Glucose Sensor;164
9.5;5.4 Copper Nanoparticles as Glucose Sensor;171
9.6;5.5 Conclusions;174
9.7;References;175
10;6 Application of Nanomaterials in Civil Engineering;180
10.1;Abstract;180
10.2;6.1 Introduction;181
10.3;6.2 Nanomaterials Used in Civil Engineering;182
10.3.1;6.2.1 Carbon Nanotubes (CNTs);182
10.3.2;6.2.2 Silicon Dioxide (SiO2) Nanoparticles;184
10.3.3;6.2.3 Titanium Dioxide (TiO2) Nanoparticles;186
10.3.4;6.2.4 Ferric Oxide (Fe2O3) Nanoparticles;187
10.3.5;6.2.5 Copper Oxide (CuO) Nanoparticles;187
10.3.6;6.2.6 Aluminium Oxide (Al2O3) Nanoparticles;188
10.3.7;6.2.7 Zirconium Oxide (ZrO2) Nanoparticles;189
10.3.8;6.2.8 Zinc Dioxide (ZnO2) Nanoparticles;190
10.3.9;6.2.9 Calcium Carbonate (CaCO3) Nanoparticles;190
10.3.10;6.2.10 Chromium Oxide (Cr2O3) Nanoparticles;192
10.3.11;6.2.11 Silver (Ag) Nanoparticles;192
10.4;6.3 Environmental and Economical Aspect;193
10.5;6.4 Nanomaterials as Corrosion Inhibitors;194
10.6;6.5 Conclusions;196
10.7;References;197
11;7 Design, Development and Application of Nanocoatings;201
11.1;Abstract;201
11.2;7.1 Coating and Nanocoatings;202
11.3;7.2 Techniques for Fabrication of Nanocoatings;202
11.3.1;7.2.1 Vapour Phase Method;202
11.3.1.1;7.2.1.1 Physical Vapour Deposition;203
11.3.1.2;7.2.1.2 Chemical Vapour Deposition;204
11.3.1.3;7.2.1.3 Plasma Arc;205
11.3.1.4;7.2.1.4 Flame Synthesis;207
11.3.1.5;7.2.1.5 Laser Ablation;207
11.3.2;7.2.2 Liquid Phase Method;208
11.3.2.1;7.2.2.1 Electrochemical;208
11.3.2.2;7.2.2.2 Precipitation;208
11.3.2.3;7.2.2.3 Sol–Gel;210
11.3.2.4;7.2.2.4 Hydrothermal;212
11.3.2.5;7.2.2.5 Microemulsion;213
11.4;7.3 Research and Development in Nanocoatings;213
11.5;7.4 Application of Nanocoatings;214
11.6;References;215
12;8 Electronic Behavior of Nanocrystalline Silicon Thin Film Transistor;218
12.1;Abstract;218
12.2;8.1 Introduction;218
12.3;8.2 Fabrication of nc-Si Based TFTs;220
12.4;8.3 Conduction Models;228
12.5;8.4 Electrical Instability;232
12.5.1;8.4.1 Powell’s Model;233
12.5.2;8.4.2 Libsch’s Model;237
12.5.3;8.4.3 Nathan’s Model;238
12.6;8.5 Conclusion;239
12.7;References;240
13;9 Molecular Electronics;243
13.1;Abstract;243
13.2;9.1 Introduction;244
13.3;9.2 What Is Molecular Electronics?;244
13.4;9.3 First-Generation Molecular Devices;245
13.5;9.4 Second Generation of Molecular Devices;250
13.6;9.5 Third Generation of Molecular Devices;253
13.6.1;9.5.1 Current Transport Through Single 1,4-Benzenedithiol (BDT) and 1,4-Benzenedimethanedithiol (BDMT) Molecules;258
13.6.2;9.5.2 Current Transport Through Single DNA;261
13.7;9.6 Theoretical Aspect for Conduction Through Single Molecule;264
13.8;9.7 Outlook and Open Questions;266
13.9;References;267
14;10 Organic Light-Emitting Diodes—A Review;269
14.1;Abstract;269
14.2;10.1 Organic Light-Emitting Diodes–A Review;270
14.3;10.2 Inorganic LEDs;271
14.4;10.3 Organic LEDs;272
14.5;10.4 Characteristics of OLED;276
14.6;10.5 Fabrication Steps of Bio-WPLED [7];287
14.7;10.6 Characteristics of Laboratory Made Prototype Typical Device;289
14.8;10.7 Conclusion;294
14.9;References;294
15;11 Hematological Complications and Rouleaux Formation of Blood Components (Leukocytes and Platelet Cells) and Parameters;296
15.1;Abstract;296
15.2;11.1 Introduction;297
15.3;11.2 Materials and Methods;298
15.3.1;11.2.1 Sample Type I for Leukocytes;298
15.3.2;11.2.2 Sample Type II for Platelet Cells;298
15.4;11.3 Effects of Glucose on Blood Cells;299
15.4.1;11.3.1 Results;299
15.4.2;11.3.2 Regions of Interest of WBCs for Sugar Analyte;299
15.4.3;11.3.3 Statistical Comparison Under Glucose [C6H12O6];301
15.4.4;11.3.4 Discussions and Conclusive Remarks;301
15.5;11.4 Effects of Salt (NaCl) on WBCs and Platelet Cells;305
15.5.1;11.4.1 Materials and Methods;307
15.5.2;11.4.2 Results;307
15.5.3;11.4.3 Regions of Interest for WBCs Under Salt;307
15.5.4;11.4.4 Regions of Interest for Platelet Cells Under Salt;307
15.6;11.5 Discussions;307
15.7;11.6 Effects of Distilled Water on Blood Cells;310
15.7.1;11.6.1 Results;311
15.7.2;11.6.2 Regions of Interest for WBCs Under Water;311
15.7.3;11.6.3 Regions of Interest for Platelet Cells Under Water;311
15.8;11.7 Statistical Comparison of Blood Components and Parameters Under Pure Water (H2O);311
15.9;11.8 Results and Discussions;314
15.10;11.9 Summary;317
15.11;References;320
16;12 Quantum Dot Sensitized Solar Cells (QDSSCs);322
16.1;Abstract;322
16.2;12.1 Introduction;322
16.3;12.2 QDSSC Structure;323
16.4;12.3 Working Principle;324
16.5;12.4 Conclusions;327
16.6;References;328




