E-Book, Englisch, Band 47, 391 Seiten, eBook
E-Book, Englisch, Band 47, 391 Seiten, eBook
Reihe: Microorganisms for Sustainability
ISBN: 978-981-99-9621-6
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1. The Contribution of Artificial Intelligence to Drug Discovery: Current Progress and Prospects for the Future.- 2. Prediction of Plant disease using Artificial Intelligence.- 3. Computer Vision Based Remote Care of Microbiological Data Analysis.- 4. A Comparative Study of Various Machine Learning (ML) Approaches for Fake News Detection in Web based Applications.- 5. Analytics and Decision-Making Model Using ML For IoT Based Greenhouse Precision Management in Agriculture.- 6. Distil-BERT based Text Classification for Automated Diagnosis of Mental Health Conditions.- 7. An optimized hybrid ARIMA-LSTM model for time series forecasting of Agriculture production in INDIA.- 8. An Exploratory Analysis of Machine Intelligence Enabled Plant Diseases Assessment.- 9. Synergizing Smart Farming and Human Bioinformatics through IoT and Sensor Devices.- 10. Deep learning assisted techniques for detection & prediction of colorectal cancer from medical images and microbial modality.- 11. IoT Enabled Smart farming and human bioinformatics.- 12. Smart farming and human bioinformatics system based on Context aware computing systems.- 13. Plant Diseases Diagnosis with Artificial Intelligence (AI).- 14. Analyzing the Frontier of AI-Based Plant Disease Detection: Insights and Perspectives.- 15. Fuzzy and Data Mining Methods for Enhancing Plant Productivity and Sustainability.- 16. Plant Disease Diagnosis with Artificial Intelligence (AI).- 17. Sustainable AI driven Applications for Plant Care and Treatment.- 18. Use Cases and Future Aspects of Intelligent Techniques in Microbe Data Analysis.- 19. Early Crop Disease Identification Using Multi-Fork Tree Networks and Microbial Data Intelligence.- 20. Guarding Maize: Vigilance Against Pathogens Early Identification, Detection and Prevention.- 21. Comprehensive Analysis of Deep Learning Models for Plant Disease Prediction.- 22. Enhancing Single-Cell Trajectory Inference and Microbial Data Intelligence.- 23. AI assisted methods for protein structure prediction and analysis.