Keuper / Locatello | Pattern Recognition | Buch | 978-3-032-12839-3 | www2.sack.de

Buch, Englisch, 649 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 996 g

Reihe: Lecture Notes in Computer Science

Keuper / Locatello

Pattern Recognition

47th DAGM German Conference, DAGM GCPR 2025, Freiburg, Germany, September 23-26, 2025, Proceedings
Erscheinungsjahr 2026
ISBN: 978-3-032-12839-3
Verlag: Springer

47th DAGM German Conference, DAGM GCPR 2025, Freiburg, Germany, September 23-26, 2025, Proceedings

Buch, Englisch, 649 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 996 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-032-12839-3
Verlag: Springer


This book constitutes the refereed proceedings of the 47th DAGM German Conference on Pattern Recognition, DAGM-GCPR 2025, held in Freiburg, Germany, during September 23-26, 2025.

The 40 full papers presented in this volume were carefully reviewed and selected from 85 submissions. 

They are grouped into the following topics: Computer Vision Systems and Applications; Video Analysis and Synthesis; Machine Learning Methods; Applications of Foundation Models; Safety and Robustness; 3D Perception and Reconstruction; Photogrammetry and Remote Sensing.

Keuper / Locatello Pattern Recognition jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Computer Vision Systems and Applications.

.-  Box it and Track it: A Weakly Supervised Framework for Cell Tracking.

.- A Cascaded Dilated Convolution Approach for Mpox Lesion Classification.

.- HistDiST: Histopathological Diffusion-based Stain Transfer.

.- Deep Learning-Assisted Dynamic Mode Decomposition for Non-resonant Background Removal in CARS Spectroscopy.

.- ?-Quant: Towards Learnable Quantization for Low-bit Pattern
 Recognition.

.- EVCS: A Benchmark for Fine-Grained Electric Vehicle Charging
 Station Detection.

.- Video Analysis and Synthesis.

.-  SegSLR: Promptable Video Segmentation for Isolated Sign Language
 Recognition.

.- Video Object Segmentation-aware Audio Generation.

.-  MCUCoder: Adaptive Bitrate Learned Video Compression for IoT Devices.

.- VisualChef: Generating Visual Aids in Cooking via Mask Inpainting.

.- StorySync: Training-Free Subject Consistency via Region Harmonization.

.-  Structured Universal Adversarial Attacks on Object Detection for
 Video Sequences.

.- Road Obstacle Video Segmentation.

.- Machine Learning Methods.

.- Don’t Miss Out on Novelty: Importance of Novel Features for Deep
 Anomaly Detection.

.- LADB: Latent Aligned Diffusion Bridges for Semi-Supervised Domain
 Translation.

.- On the Dangers of Bootstrapping Generation for Continual Learning
 and Beyond.

.-  Combined Image Data Augmentations diminish the benefits of
 Adaptive Label Smoothing.

.- Efficient Masked Attention Transformer for Few-Shot Classification
 and Segmentation.

.- Applications of Foundation Models.

.-  Using Knowledge Graphs to harvest datasets for efficient CLIP model
 training.

.- Unlocking In-Context Learning for Natural Datasets Beyond Language
 Modelling.

.-  Investigating Structural Pruning and Recovery Techniques for
 Compressing Multimodal Large Language Models: An Empirical Study.

.-  Assessing Foundation Models for Mold Colony Detection with Limited
 Training Data.

.- Common Data Properties Limit Object-Attribute Binding in CLIP.

.-  subCellSAM: Zero-Shot (Sub-)Cellular Segmentation for Hit Validation
 in Drug Discovery.

.- Safety and Robustness.

.-  synth-dacl: Does Synthetic Defect Data Enhance Segmentation
 Accuracy and Robustness for Real-World Bridge Inspections?.

.- FedPCE: Federated Personalized Client Embeddings for Post-training
 Knowledge Distillation.

.- Object Risk Estimation for Autonomous Driving Safety.

.- Rethinking Semi-supervised Segmentation Beyond Accuracy:
 Robustness and Reliability.

.-  Detection of Synthetic Face Images: Accuracy, Robustness, Generalization.

.- 3D Perception and Reconstruction.

.- MT-Occ: Single-View 3D Occupancy Prediction via Multi-Task Distillation.

.-  Hierarchical Insights: Exploiting Structural Similarities for Reliable 3D
 Semantic Segmentation.

.-  CoProU-VO: Combining Projected Uncertainty for End-to-End
 Unsupervised Monocular Visual Odometry.

.-  Combining Absolute and Semi-Generalized Relative Poses for Visual
 Localization.

.- Graph Roof Reconstruction with Synthetic Data from Misaligned Labels.

.-  sshELF: Single-Shot Hierarchical Extrapolation of Latent Features for
 3D Reconstruction from Sparse-Views.

.- Photogrammetry and Remote Sensing.

.- NaT-ReX: Naturalness Assessment with Transformer-Based Reliable
 Explainability.

.-  Semantic Segmentation of Structural Damage: A Comparative Study
 of YOLO11 and Encoder-Decoder Networks.

.- Can Multitask Learning Enhance Model Explainability?.

.-  Out-of-Distribution Detection in LiDAR Semantic Segmentation Using
 Epistemic Uncertainty from Hierarchical GMMs.

.- RadarSeq: A Temporal Vision Framework for User Churn Prediction
 via Radar Sequence Chart.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.