Buch, Englisch, 218 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 347 g
Reihe: Universitext
An Introduction to Oriented Matroids
Buch, Englisch, 218 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 347 g
Reihe: Universitext
ISBN: 978-3-540-55417-2
Verlag: Springer Berlin Heidelberg
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Algebra Homologische Algebra
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Ökonometrie
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
- Mathematik | Informatik Mathematik Mathematische Analysis Variationsrechnung
- Mathematik | Informatik Mathematik Operations Research Spieltheorie
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftstheorie, Wirtschaftsphilosophie
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
Weitere Infos & Material
1 Prerequisites.- 7.1 Sets and Relations.- 10.2 Linear Algebra.- 14.3 Topology.- 15.4 Polyhedra.- 2 Linear Duality in Graphs.- 2.1 Some Definitions.- 2.2 FARKAS’ Lemma for Graphs.- 2.3 Subspaces Associated with Graphs.- 2.4 Planar Graphs.- 2.5 Further Reading.- 3 Linear Duality and Optimization.- 3.1 Optimization Problems.- 3.2 Recognizing Optimal Solutions.- 3.3 Further Reading.- 4 The FARKAS Lemma.- 4.1 A first version.- 4.2 Homogenization.- 4.3 Linearization.- 4.4 Delinearization.- 4.5 Dehomogenization.- 4.6 Further Reading.- 5 Oriented Matroids.- 5.1 Sign Vectors.- 5.2 Minors.- 5.3 Oriented Matroids.- 5.4 Abstract Orthogonality.- 5.5 Abstract Elimination Property.- 5.6 Elementary vectors.- 5.7 The Composition Theorem.- 5.8 Elimination Axioms.- 5.9 Approximation Axioms.- 5.10 Proof of FARKAS’ Lemma in OMs.- 5.11 Duality.- 5.12 Further Reading.- 6 Linear Programming Duality.- 6.1 The Dual Program.- 6.2 The Combinatorial Problem.- 6.3 Network Programming.- 6.4 Further Reading.- 7 Basic Facts in Polyhedral Theory.- 7.1 MINKOWSKI’S Theorem.- 7.2 Polarity.- 7.3 Faces of Polyhedral Cones.- 7.4 Faces and Interior Points.- 7.5 The Canonical Map.- 7.6 Lattices.- 7.7 Face Lattices of Polars.- 7.8 General Polyhedra.- 7.9 Further Reading.- 8 The Poset (O, ?).- 8.1 Simplifications.- 8.2 Basic Results.- 8.3 Shellability of Topes.- 8.4 Constructibility of O.- 8.5 Further Reading.- 9 Topological Realizations.- 9.1 Linear Sphere Systems.- 9.2 A Nonlinear OM.- 9.3 Sphere Systems.- 9.4 PL Ball Complexes.- 9.5 Further Reading.