Buch, Englisch, 206 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 494 g
Reihe: Static & Dynamic Game Theory: Foundations & Applications
Regularization Approach
Buch, Englisch, 206 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 494 g
Reihe: Static & Dynamic Game Theory: Foundations & Applications
ISBN: 978-3-031-07050-1
Verlag: Springer International Publishing
After a brief introduction, solvability conditions are presented for the regular differential games and $H_{\inf}$ control problems. In the following chapter, the authors solve the singular finite-horizon linear-quadratic differential game using the regularization method. Next, they apply this method to the solution of an infinite-horizon type. The last two chapters are dedicated to the solution of singular finite-horizon and infinite-horizon linear-quadratic $H_{\inf}$ control problems. The authors use theoretical and real-world examples to illustrate the results and their applicability throughout the text,and have carefully organized the content to be as self-contained as possible, making it possible to study each chapter independently or in succession. Each chapter includes its own introduction, list of notations, a brief literature review on the topic, and a corresponding bibliography. For easier readability, detailed proofs are presented in separate subsections.
Singular Linear-Quadratic Zero-Sum Differential Games and $H_{\inf}$ Control Problems will be of interest to researchers and engineers working in the areas of applied mathematics, dynamic games, control engineering, mechanical and aerospace engineering, electrical engineering, and biology. This book can also serve as a useful reference for graduate students in these area
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Introduction.- Examples of Singular Extremal Problems and Some Basic Notions.- Preliminaries.- Singular Finite-Horizon Zero-Sum Di?erential Game.- Singular In?nite-Horizon Zero-Sum Di?erential Game.- Singular Finite-Horizon $H_{\inf}$ Problem.- Singular In?nite-Horizon $H_{\inf}$ Problem.