Buch, Englisch, 160 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 453 g
Bigger Data, Easier Workflows
Buch, Englisch, 160 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 453 g
ISBN: 978-1-032-66028-8
Verlag: Taylor & Francis Ltd
You'll learn about the Apache Arrow project's origins, goals, and its significance in bridging the gap between data science and big data ecosystems. You'll also learn how to leverage the arrow R package to work directly with files in various formats, such as CSV and Parquet, using familiar dplyr syntax. This book explores practical topics like data manipulation, file formats, working with larger datasets, and optimizing workflows for data in cloud storage. Advanced chapters examine user-defined functions, integration with other tools like DuckDB, and extending Arrow's capabilities to work with geospatial data.
Written by developers of the Arrow R package, this guide is essential for anyone looking to scale their data processing capabilities in R.
Zielgruppe
Professional Practice & Development
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Automatische Datenerfassung, Datenanalyse
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Datenbankdesign & Datenbanktheorie
- Wirtschaftswissenschaften Betriebswirtschaft Management Projektmanagement
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion Informationsarchitektur
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Business Application Mathematische & Statistische Software
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion Informationsvisualisierung
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Software Engineering
Weitere Infos & Material
Acknowledgements Foreword 1. Introduction 2. Getting Started 3. Data Manipulation 4. Files and Formats 5. Datasets 6. Cloud 7. Advanced Topics 8. Sharing Data and Interoperability References Appendices