KC | Large Language Models (LLMs) in Protein Bioinformatics | Buch | 978-1-0716-4622-9 | sack.de

Buch, Englisch, 358 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 901 g

Reihe: Methods in Molecular Biology

KC

Large Language Models (LLMs) in Protein Bioinformatics


Erscheinungsjahr 2025
ISBN: 978-1-0716-4622-9
Verlag: Springer US

Buch, Englisch, 358 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 901 g

Reihe: Methods in Molecular Biology

ISBN: 978-1-0716-4622-9
Verlag: Springer US


This book presents a comprehensive collection of methods, resources, and studies that use large language models (LLMs) in the field of protein bioinformatics. Reflecting the swift pace of LLM development today, the volume delves into numerous LLM-based tools to investigate proteins science, from protein language models to the prediction of protein-ligand binding sites. Written for the highly successful series, chapters include the kind of detailed implementation advice to ensure success in future research.

Authoritative and practical, serves as an ideal guide for scientists seeking to tap into the potential of artificial intelligence in this vital area of biological study.

KC Large Language Models (LLMs) in Protein Bioinformatics jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


A Survey of Pre-Trained Protein Language Models.- Enhancing Structure-Aware Protein Language Models with Efficient Fine-Tuning for Various Protein Prediction Tasks.- Exploring ProtFlash: An Efficient Approach to Protein Data Analysis.- Ranking Protein-Protein Models with Large Language Models and Graph Neural Networks.- Translating a GO Term List to Human Readable Function Description Using GO2Sum.- TransFun: A Tool of Integrating Large Language Models, Transformers, and Equivariant Graph Neural Networks to Predict Protein Function.- Using InterLabelGO+ for Accurate Protein Language Model-Based Function Prediction.- Functional Annotation of Proteomes Using Protein Language Models: A High-Throughput Implementation of the ProtTrans Model.- Advances in Language-Model-Informed Protein-Nucleic Acid Binding Site Prediction.- Practical Applications of Language Models in Protein Sorting Prediction: SignalP 6.0, DeepLoc 2.1, and DeepLocPro 1.0.- CNN-Meth: A Tool to Accurately Predict Lysine Methylation Sites Using Evolutionary Information-Based Protein Modeling.- Predicting the Pathogenicity of Human Protein Variants: Not Only a Matter of Residue Labeling.- A Survey of Biological Function Prediction Methods with Focus on Natural Language Processing (NLP) and Large Language Models (LLM).- PLMSearch and PLMAlign: Protein Language Model-Based Homologous Sequence Search and Alignment.- Large Context, Deeper Insights: Harnessing Large Language Models for Advancing Protein-Protein Interaction Analysis.- Prediction of Protein-Peptide Binding Sites Using PepBCL.- Predicting Peptide Bioactivity Using the Unified Model Architecture UniDL4BioPep.- CLAPE: Protein-Ligand Binding Site Prediction via Protein Language Models.- Large Language Model-Based Advances in Prediction of Post-Translational Modification Sites in Proteins.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.