Kaste | Künstliche neuronale Netzwerke zur adaptiven Fahrdynamikregelung | E-Book | sack.de
E-Book

E-Book, Deutsch, Band 171, 283 Seiten, eBook

Reihe: AutoUni – Schriftenreihe

Kaste Künstliche neuronale Netzwerke zur adaptiven Fahrdynamikregelung

E-Book, Deutsch, Band 171, 283 Seiten, eBook

Reihe: AutoUni – Schriftenreihe

ISBN: 978-3-658-43109-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



In dem vorliegenden Buch wird der Einsatz eines hybriden Regelungskonzeptes für die Fahrdynamikregelung eines autonomen Versuchsträgers untersucht. Dabei wird ein modellbasierter, kaskadierter Querdynamikregler um ein künstliches neuronales Netzwerk (KNN) erweitert. Das KNN wird ohne „Vorwissen“ implementiert und aktiv im geschlossenen Regelkreis trainiert. Die Untersuchungen werden dabei sowohl in Simulationen, als auch in einem realen Versuchsträger durchgeführt. Die Versuche zeigen das Leistungsvermögen des hybriden Regelungskonzeptes. Bei geringer Fahrzeugdynamik ist eine präzise Fahrzeugführung auch ohne KNN möglich. Bei hoher Dynamik resultieren jedoch Abweichungen vom Sollkurs, die durch das iterativ lernende Netzwerk schrittweise reduziert werden. Durch die situationsabhängige Optimierung der Netzwerkgewichte wird der Einfluss des systematischen Fehlers des zu Grunde liegenden Modells kompensiert und die Regelgüte verbessert. Dieses Verhalten kann durch geeignete Auswahl derDesignparameter des KNN für jedes der betrachteten Szenarien aufgezeigt werden. Die Anpassung der Netzwerkgewichte ermöglicht sowohl im Fehlerfall als auch bei hoher Fahrzeugdynamik und ungenauer Systemidentifikation eine Verbesserung der Regelgüte im Vergleich zum rein modellbasierten Basisregler.
Kaste Künstliche neuronale Netzwerke zur adaptiven Fahrdynamikregelung jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Motivationund Stand der Technik.- Theorie künstlicher neuronaler Netzwerke.- Adaptive Fahrdynamikregelung.- Effekte auf die Adaptionsgeschwindigkeit des KNN im geschlossenen Regelkreis.- Langzeitstabilität des neuronalen Netzwerkes im geschlossenen Regelkreis.- Auswertung der Fahrversuche.


Jonas Kaste studierte Maschinenbau mit der Vertiefungsrichtung Luft- und Raumfahrttechnik an der TU Braunschweig und promovierte berufsbegleitend in der Konzernforschung eines Automobilherstellers.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.