E-Book, Englisch, 312 Seiten
Kassner Fundamentals of Creep in Metals and Alloys
2. Auflage 2008
ISBN: 978-0-08-091499-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, 312 Seiten
ISBN: 978-0-08-091499-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Creep refers to the slow, permanent deformation of materials under external loads, or stresses. It explains the creep strength or resistance to this extension. This book is for experts in the field of strength of metals, alloys and ceramics. It explains creep behavior at the atomic or 'dislocation defect” level. This book has many illustrations and many references. The figure formats are uniform and consistently labeled for increased readability. This book is the second edition that updates and improves the earlier edition.
•Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials.
•Transmission electron micrographs provide direct insight into the basic microstructure of metals deforming at high temperatures.
•Extensive literature review of about 1000 references provides an excellent overview of the field.
Dr. Kassner is a professor in the department of Aerospace and Mechanical Engineering at the University of Southern California in Los Angeles. He holds M.S.and Ph.D. degrees in Materials Science and Engineering from Stanford University, has published two books and more than 200 articles and book chapters in the areas of metal plasticity theory, creep, fracture, phase diagrams, fatigue, and semi-solid forming, and currently serves on the editorial board of Elsevier's International Journal of Plasticity.
Autoren/Hrsg.
Weitere Infos & Material
1;Front cover;1
2;Fundamentals of Creep in Metals and Alloys;4
3;Copyright Page;5
4;Preface;6
5;Contents;8
6;List of Symbols and Abbreviations;12
7;Chapter 1. Introduction;18
7.1;1.1 Description of Creep;20
7.2;1.2 Objectives;25
8;Chapter 2. Five-Power-Law Creep;26
8.1;2.1 Macroscopic Relationships;28
8.1.1;2.1.1 Activation Energy and Stress Exponents;28
8.1.2;2.1.2 Infl uence of the Elastic Modulus;34
8.1.3;2.1.3 Stacking Fault Energy and Summary;38
8.1.4;2.1.4 Natural Three-Power-Law;41
8.1.5;2.1.5 Substitutional Solid Solutions;45
8.2;2.2 Microstructural Observations;45
8.2.1;2.2.1 Subgrain Size, Frank Network Dislocation Density, Subgrain Misorientation Angle, and the Dislocation Separation within;45
8.2.2;2.2.2 Constant Structure Equations;54
8.2.3;2.2.3 Primary Creep Microstructures;60
8.2.4;2.2.4 Creep Transient Experiments;66
8.2.5;2.2.5 Internal Stress;68
8.3;2.3 Rate-Controlling Mechanisms;78
8.3.1;2.3.1 Introduction;78
8.3.2;2.3.2 Dislocation Microstructure and the Rate-Controlling Mechanism;89
8.3.3;2.3.3 In situ and Microstructure-Manipulation Experiments;93
8.3.4;2.3.4 Additional Comments on Network Strengthening;93
8.4;2.4 Other Effects on Five-Power-Law Creep;99
8.4.1;2.4.1 Large Strain Creep Deformation and Texture Effects;99
8.4.2;2.4.2 Effect of Grain Size;103
8.4.3;2.4.3 Impurity and Small Quantities of Strengthening Solutes;106
8.4.4;2.4.4 Sigmoidal Creep;109
9;Chapter 3. Diffusional Creep;112
10;Chapter 4. Harper–Dorn Creep;120
10.1;4.1 Introduction;122
10.2;4.2 Theories of Harper–Dorn Creep;125
10.3;4.3 More Recent Developments;132
10.4;4.4 Other Materials for which Harper–Dorn has been Suggested;135
11;Chapter 5. Three-Power-Law Viscous Glide Creep;140
12;Chapter 6. Superplasticity;152
12.1;6.1 Introduction;154
12.2;6.2 Characteristics of Fine Structure Superplasticity;154
12.3;6.3 Microstructure of Fine Structure Superplastic Materials;158
12.3.1;6.3.1 Grain Size and Shape;158
12.3.2;6.3.2 Presence of a Second Phase;158
12.3.3;6.3.3 Nature and Properties of Grain Boundaries;158
12.4;6.4 Texture Studies in Superplasticity;159
12.5;6.5 High Strain-Rate Superplasticity;159
12.5.1;6.5.1 High Strain-Rate Superplasticity in Metal–Matrix Composites;160
12.5.2;6.5.2 High Strain-Rate Superplasticity in Mechanically Alloyed Materials;165
12.6;6.6 Superplasticity in Nano and Submicrocrystalline Materials;166
13;Chapter 7. Recrystallization;170
13.1;7.1 Introduction;172
13.2;7.2 Discontinuous Dynamic Recrystallization (DRX);174
13.3;7.3 Geometric Dynamic Recrystallization;175
13.4;7.4 Particle-Stimulated Nucleation (PSN);176
13.5;7.5 Continuous Reactions;176
14;Chapter 8. Creep Behavior of Particle-Strengthened Alloys;178
14.1;8.1 Introduction;180
14.2;8.2 Small Volume-Fraction Particles that are Coherent and Incoherent with the Matrix with Small Aspect Ratios;180
14.2.1;8.2.1 Introduction and Theory;180
14.2.2;8.2.2 Local and General Climb of Dislocations over Obstacles;184
14.2.3;8.2.3 Detachment Model;187
14.2.4;8.2.4 Constitutive Relationships;190
14.2.5;8.2.5 Microstructural Effects;194
14.2.6;8.2.6 Coherent Particles;197
15;Chapter 9. Creep of Intermetallics;200
15.1;9.1 Introduction;202
15.2;9.2 Titanium Aluminides;204
15.2.1;9.2.1 Introduction;204
15.2.2;9.2.2 Rate-Controlling Creep Mechanisms in FL TiAl Intermetallics During ‘‘Secondary’’ Creep;207
15.2.3;9.2.3 Primary Creep in FL Microstructures;214
15.2.4;9.2.4 Tertiary Creep in FL Microstructures;216
15.3;9.3 Iron Aluminides;216
15.3.1;9.3.1 Introduction;216
15.3.2;9.3.2 Anomalous Yield Point Phenomenon;218
15.3.3;9.3.3 Creep Mechanisms;221
15.3.4;9.3.4 Strengthening Mechanisms;223
15.4;9.4 Nickel Aluminides;224
15.4.1;9.4.1 Ni3Al;224
15.4.2;9.4.2 NiAl;234
16;Chapter 10. Creep Fracture;238
16.1;10.1 Background;240
16.2;10.2 Cavity Nucleation;242
16.2.1;10.2.1 Vacancy Accumulation;243
16.2.2;10.2.2 Grain-Boundary Sliding;245
16.2.3;10.2.3 Dislocation Pile-ups;245
16.2.4;10.2.4 Location;248
16.3;10.3 Growth;248
16.3.1;10.3.1 Grain-Boundary Diffusion-Controlled Growth;248
16.3.2;10.3.2 Surface Diffusion-Controlled Growth;251
16.3.3;10.3.3 Grain-Boundary Sliding;252
16.3.4;10.3.4 Constrained Diffusional Cavity Growth;252
16.3.5;10.3.5 Plasticity;256
16.3.6;10.3.6 Coupled Diffusion and Plastic Growth;257
16.3.7;10.3.7 Creep Crack Growth;261
16.4;10.4 Other Considerations;263
17;Chapter 11. ?/? ' Nickel-Based Superalloys;264
17.1;11.1 Introduction;266
17.2;11.2 Low-Temperature Creep;269
17.3;11.3 Intermediate Temperature Creep;272
17.4;11.4 High Temperature Creep;274
17.4.1;11.4.1 Dislocations Networks;274
17.4.2;11.4.2 Rafting;275
18;References;278
19;Index;306