Kashkynbayev / Akhmet | Bifurcation in Autonomous and Nonautonomous Differential Equations with Discontinuities | Buch | 978-981-10-3179-3 | sack.de

Buch, Englisch, 166 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 3967 g

Reihe: Nonlinear Physical Science

Kashkynbayev / Akhmet

Bifurcation in Autonomous and Nonautonomous Differential Equations with Discontinuities

Buch, Englisch, 166 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 3967 g

Reihe: Nonlinear Physical Science

ISBN: 978-981-10-3179-3
Verlag: Springer Nature Singapore


This book focuses on bifurcation theory for autonomous and nonautonomous differential equations with discontinuities of different types – those with jumps present either in the right-hand side, or in trajectories or in the arguments of solutions of equations. The results obtained can be applied to various fields, such as neural networks, brain dynamics, mechanical systems, weather phenomena and population dynamics. Developing bifurcation theory for various types of differential equations, the book is pioneering in the field. It presents the latest results and provides a practical guide to applying the theory to differential equations with various types of discontinuity. Moreover, it offers new ways to analyze nonautonomous bifurcation scenarios in these equations. As such, it shows undergraduate and graduate students how bifurcation theory can be developed not only for discrete and continuous systems, but also for those that combine these systems in very different ways. At the same time, it offers specialists several powerful instruments developed for the theory of discontinuous dynamical systems with variable moments of impact, differential equations with piecewise constant arguments of generalized type and Filippov systems.
Kashkynbayev / Akhmet Bifurcation in Autonomous and Nonautonomous Differential Equations with Discontinuities jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Introduction.- Hopf Bifurcation in Impulsive Systems.- Hopf Bifurcation in Fillopov Systems.- Nonautonomous Transcritical and Pitchfork Bifurcations in an Impulsive Bernoulli Equations.- Nonautonomous Transcritical and Pitchfork Bifurcations in Scalar Non-solvable Impulsive Differential Equations.- Nonautonomous Transcritical and Pitchfork Bifurcations in Bernoulli Equations with Piecewise Constant Argument of Generalized Type.


1) Prof. Dr. Marat Akhmet is a member of the Department of Mathematics, Middle East Technical University, Turkey. He is a specialist in dynamical  models, bifurcation theory, chaos theory and differential equations. He has spent several years investigating the dynamics of neural networks, economic models and mechanical systems. He has published 4 books on different topics of dynamical systems.

2)  Dr. Ardak Kashkynbayev obtained his PhD from the Department of Mathematics, Middle East Technical University, Turkey. His research focuses on differential equations, bifurcation theory, chaos theory and applications to mechanical systems.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.