Buch, Englisch, 442 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 829 g
Reihe: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series
Accelerating Discovery using Scientific Knowledge and Data
Buch, Englisch, 442 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 829 g
Reihe: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series
ISBN: 978-0-367-69820-1
Verlag: Chapman and Hall/CRC
Knowledge Guided Machine Learning: Accelerating Discovery using Scientific Knowledge and Data provides an introduction to this rapidly growing field by discussing some of the common themes of research in KGML using illustrative examples, case studies, and reviews from diverse application domains and research communities as book chapters by leading researchers.
KEY FEATURES
- First-of-its-kind book in an emerging area of research that is gaining widespread attention in the scientific and data science fields
- Accessible to a broad audience in data science and scientific and engineering fields
- Provides a coherent organizational structure to the problem formulations and research methods in the emerging field of KGML using illustrative examples from diverse application domains
- Contains chapters by leading researchers, which illustrate the cutting-edge research trends, opportunities, and challenges in KGML research from multiple perspectives
- Enables cross-pollination of KGML problem formulations and research methods across disciplines
- Highlights critical gaps that require further investigation by the broader community of researchers and practitioners to realize the full potential of KGML
Zielgruppe
Academic
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion Informationsarchitektur
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Datenbankdesign & Datenbanktheorie
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Mustererkennung, Biometrik
- Mathematik | Informatik EDV | Informatik Informatik Theoretische Informatik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Spiele-Programmierung, Rendering, Animation
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Mathematik | Informatik EDV | Informatik Business Application Mathematische & Statistische Software
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftsstatistik, Demographie
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Computer Vision
Weitere Infos & Material
About the Editors. List of Contributors. 1 Introduction. 2 Targeted Use of Deep Learning for Physics and Engineering. 3 Combining Theory and Data-Driven Approaches for Epidemic Forecasts. 4 Machine Learning and Projection-Based Model Reduction in Hydrology and Geosciences. 5 Applications of Physics-Informed Scientific Machine Learning in Subsurface Science: A Survey. 6 Adaptive Training Strategies for Physics-Informed Neural Networks. 7 Modern Deep Learning for Modeling Physical Systems. 8 Physics-Guided Deep Learning for Spatiotemporal Forecasting. 9 Science-Guided Design and Evaluation of Machine Learning Models: A Case-Study on Multi-Phase Flows. 10 Using the Physics of Electron Beam Interactions to Determine Optimal Sampling and Image Reconstruction Strategies for High Resolution STEM. 11 FUNNL: Fast Nonlinear Nonnegative Unmixing for Alternate Energy Systems. 12 Structure Prediction from Scattering Profiles: A Neutron-Scattering Use-Case. 13 Physics-Infused Learning: A DNN and GAN Approach. 14 Combining System Modeling and Machine Learning into Hybrid Ecosystem Modeling. 15 Physics-Guided Neural Networks (PGNN): An Application in Lake Temperature Modeling. 16 Physics-Guided Recurrent Neural Networks for Predicting Lake Water Temperature. 17 Physics-Guided Architecture (PGA) of LSTM Models for Uncertainty Quantification in Lake Temperature Modeling, Index.