Kariya / Sinha / Lieberman | Robustness of Statistical Tests | E-Book | sack.de
E-Book

E-Book, Englisch, 208 Seiten, Web PDF

Kariya / Sinha / Lieberman Robustness of Statistical Tests


1. Auflage 2014
ISBN: 978-1-4832-6600-8
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 208 Seiten, Web PDF

ISBN: 978-1-4832-6600-8
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Robustness of Statistical Tests provides a general, systematic finite sample theory of the robustness of tests and covers the application of this theory to some important testing problems commonly considered under normality. This eight-chapter text focuses on the robustness that is concerned with the exact robustness in which the distributional or optimal property that a test carries under a normal distribution holds exactly under a nonnormal distribution. Chapter 1 reviews the elliptically symmetric distributions and their properties, while Chapter 2 describes the representation theorem for the probability ration of a maximal invariant. Chapter 3 explores the basic concepts of three aspects of the robustness of tests, namely, null, nonnull, and optimality, as well as a theory providing methods to establish them. Chapter 4 discusses the applications of the general theory with the study of the robustness of the familiar Student's r-test and tests for serial correlation. This chapter also deals with robustness without invariance. Chapter 5 looks into the most useful and widely applied problems in multivariate testing, including the GMANOVA (General Multivariate Analysis of Variance). Chapters 6 and 7 tackle the robust tests for covariance structures, such as sphericity and independence and provide a detailed description of univariate and multivariate outlier problems. Chapter 8 presents some new robustness results, which deal with inference in two population problems. This book will prove useful to advance graduate mathematical statistics students.

Kariya / Sinha / Lieberman Robustness of Statistical Tests jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Robustness of Statistical Tests;4
3;Copyright Page;5
4;Table of Contents;8
5;Dedication;6
6;Preface;10
7;Introduction;14
8;Chapter 1. Spherically Symmetric Distributions;18
8.1;1.1. Why Normal and Why Not Spherical?;18
8.2;1.2. Elliptically Symmetric Distributions;21
8.3;1.3. Left-Orthogonally Invariant Distributions;26
8.4;Exercises;30
9;Chapter 2. Invariance Approach to Testing;32
9.1;2.1. Invariant Measures on Groups;32
9.2;2.2. Invariant Measures on Homogeneous Spaces;38
9.3;2.3. A Review of the Theory of Testing of Hypotheses;41
9.4;2.4. Distribution of a Maximal Invariant;47
9.5;Appendix to Chapter 2, Section 4;51
9.6;Exercises;54
10;Chapter 3. General Approach to the Robustness of Tests;56
10.1;3.1. Null, Nonnull, and Optimally Robustness;56
10.2;3.2. Outline of Testing Problems under Normality;59
10.3;3.3. General Theory on Null Robustness;66
10.4;3.4. General Theory on Nonnull Robustness;79
10.5;3.5. General Approach to Optimality Robustness;91
10.6;Exercises;96
11;Chapter 4. Robustness of t-Test and Tests for Serial Correlation;98
11.1;4.1. Formulation of the Problem;98
11.2;4.2. One-Sided Testing Problems without Invariance;102
11.3;4.3. Two-Sided Testing Problems without Invariance;106
11.4;4.4. UMPI Property of t-Test;110
11.5;4.5. Tests on Serial Correlation without Invariance;112
11.6;Exercises;118
12;Chapter 5. General Multivariate Analysis of Variance(GMANOVA);120
12.1;5.1. Introduction;120
12.2;5.2. GMANOVA Model and Problem;121
12.3;5.3. MANOVA Problem;131
12.4;5.4. GMANOVA Problem;135
12.5;Appendix;146
12.6;Exercises;148
13;Chapter 6. Tests for Covariance Structures;150
13.1;6.1. Introduction;150
13.2;6.2. Testing S12 = 0;151
13.3;6.3. Testing Sphericity;157
13.4;6.3. Testing Sphericity;157
13.5;Exercises;161
14;Chapter 7. Detection of Outliers;162
14.1;7.1. Introduction;162
14.2;7.2. Test for Mean Slippage;163
14.3;7.3. Test for Dispersion Slippage;175
14.4;Appendix;181
14.5;Exercises;183
15;Chapter 8. Two-Population Problems;184
15.1;8.1. Introduction;184
15.2;8.2. Test of Equality of Two Location Parameters -Nonnormal Case;185
15.3;8.3. Test of Equality of Two Location Parameters-Nonexponential Case;188
15.4;8.4. Test of Equality of Two Scale Parameters—Nonnormal Case;190
15.5;8.5. Test of Equality of Two Scale Parameters–Nonexponential Case;192
15.6;Exercises;194
16;References;196
17;Author Index;202
18;Subject Index;204



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.