E-Book, Englisch, 624 Seiten
Karger-Kocsis / Fakirov Nano- and Micromechanics of Polymer Blends and Composites
1. Auflage 2009
ISBN: 978-3-446-43012-9
Verlag: Carl Hanser Fachbuchverlag
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 624 Seiten
ISBN: 978-3-446-43012-9
Verlag: Carl Hanser Fachbuchverlag
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
The book gives a state-of-art overview on all aspects of micro- and nanomechanics of polymers, polymeric blends, and composites. Major issues tackled include experimental techniques to study the mechanical performance of polymer systems, especially with respect to molecular, supermolecular and filler architectures on suitable model materials; prediction methods for the mechanical performance (short and long term properties); modeling tools and approaches. All these aspects are highlighted for polymeric systems of both academic and practical relevance.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Content;8
3;Contributors;18
4;PART I POLYMERS;24
5;Chapter 1 Nano- and Micromechanics of Crystalline Polymers;26
5.1;1.1. Introduction;26
5.2;1.2. Tensile deformation of crystalline polymers;27
5.3;1.3. Cavitation in tensile deformation;27
5.4;1.4. Tensile deformation of polyethylene and polypropylene;31
5.5;1.5. Deformation micromechanisms in crystalline polymers;36
5.6;1.6. Molecular mechanisms at a nanometer scale;39
5.7;1.7. Dislocations in crystal plasticit;46
5.8;1.8. Generation of dislocations;48
5.9;1.9. Competition between crystal plasticity and cavitation;57
5.10;1.10. Micromechanics modeling in semicrystalline polymers;58
5.10.1;1.10.1. Microstructure and mechanical properties;58
5.10.2;1.10.2. The micromechanical models;59
5.10.3;1.10.3. Idealizing the microstructure of semicrystalline polymers;61
5.10.4;1.10.4. Elastic behavior prediction;63
5.11;References;71
6;Chapter 2 Modeling Mechanical Propertiesof Segmented Polyurethanes;82
6.1;2.1. Introduction;82
6.2;2.2. Predicting Young's modulus of segmented polyurethanes;86
6.2.1;2.2.1. Relationship between Young's modulus and formulation – experimental observations;86
6.2.2;2.2.2. Theory;87
6.2.3;2.2.3. Young's modulus: comparing theory with experiments;95
6.3;2.3. Modeling tensile stress-strain behavior;99
6.4;2.4. Linear viscoelasticity;105
6.5;2.5. Non-equilibrium factors and their influence on mechanical properties;107
6.6;2.6. Conclusions and Outlook;107
6.7;Acknowledgment;108
6.8;References;108
7;PART II NANOCOMPOSITES:INFLUENCE OF PREPARATION;114
8;Chapter 3 Nanoparticles/Polymer Composites:Fabrication and Mechanical Properties;116
8.1;3.1. Introduction;116
8.2;3.2. Dispersion-oriented manufacturing of nanocomposites;118
8.2.1;3.2.1. Conventional two-step manufacturing;118
8.2.2;3.2.2. Specific two-step manufacturing;130
8.2.3;3.2.3. One-step manufacturing;141
8.3;3.3. Dispersion and filler/matrix interaction-oriented manufacturing of nanocomposites;143
8.3.1;3.3.1. Two-step manufacturing in terms of in situ reactive compatibilization;143
8.3.2;3.3.2. One-step manufacturing in terms of in situ graft and crosslinking;147
8.4;3.4. Dispersion, filler/filler interaction and filler/matrix interactionoriented manufacturing of nanocomposites;152
8.5;3.5. Conclusions;158
8.6;Acknowledgements;159
8.7;References;159
9;Chapter 4 Rubber Nanocomposites: New Developments, New Opportunities;164
9.1;4.1. Introduction;164
9.2;4.2. General considerations on elastomeric composites;165
9.3;4.3. Spherical in situ generated reinforcing particles;167
9.4;4.4. Carbon nanotube-filled rubber composites;176
9.5;4.5. Conclusions;184
9.6;References;185
10;Chapter 5 Organoclay, Particulate and Nanofibril Reinforced Polymer-Polymer Composites: Manufacturing, Modeling and Applications;190
10.1;5.1. Introduction;190
10.2;5.2. Polypropylene/organoclay nanocomposites: experimental characterisation and modeling;192
10.2.1;5.2.1. Peculiarities of polymer/clay nanocomposites;192
10.2.2;5.2.2. Parametric study and associated properties of PP/organoclay nanocomposites;194
10.2.3;5.2.3. Evaluation of the experimental data by means of Taguchi and Pareto ANOVA methods;197
10.2.4;5.2.4. Materials, manufacturing and characterization of nano composites;201
10.2.5;5.2.5. Analytical models for composites;202
10.2.6;5.2.6. Comparisons of experimental results with the calculated values;205
10.3;5.3. The dispersion problem in the case of polymer-polymer nanocomposites;208
10.3.1;5.3.1. Manufacturing of nanofibrillar polymer-polymer composites;210
10.3.2;5.3.2. Nanofibrillar vs. microfibrillar polymer-polymer composites and their peculiarities;211
10.4;5.4. Directional, thermal and mechanical characterization of polymerpolymernanofibrillar composites;213
10.4.1;5.4.1. Directional state of NFC as revealed by wide-angle X-ray scattering;213
10.4.2;5.4.2. Thermal characterization of NFC;215
10.4.3;5.4.3. Mechanical properties of NFC;216
10.5;5.5. Potentials for application of nanofibrillar composites and the materials developed from neat nanofibrils;219
10.6;5.6. Conclusions and outlook;222
10.7;References;224
11;PART III NANO- AND MICROCOMPOSITES:INTERPHASE;230
12;Chapter 6 Viscoelasticity of Amorphous Polymer Nanocomposites with Individual Nanoparticles;232
12.1;6.1. Introduction;232
12.2;6.2. Brief physics of amorphous polymer matrices;233
12.2.1;6.2.1. Equilibrium structure of amorphous chains;233
12.2.2;6.2.2. Microscopic relaxation modes and segmental mobility;235
12.2.3;6.2.3. Entropy vs. energy driven mechanical response;237
12.3;6.3. Basic aspects of amorphous polymer nanocomposites;239
12.3.1;6.3.1. Structure of surface adsorbed chains;240
12.3.2;6.3.2. Segmental immobilization of chains in the presence of solid surfaces;242
12.4;6.4. Reinforcement of amorphous nanocomposite below and abovematrix Tg;245
12.5;6.5. Strain induced softening of amorphous polymer nanocomposites;251
12.6;6.6. Relaxation of chains in the presence of nanoparticles;256
12.7;6.7.`Conclusions and outlook;258
12.8;References;259
13;Chapter 7 Interphase Phenomena in Polymer Micro- and Nanocomposites;264
13.1;7.1. Introduction;264
13.2;7.2. Micro-scale interphase in polymer composites;269
13.3;7.3. Nano-scale interphase;273
13.4;7.4. Chain immobilization on the nano-scale;275
13.5;7.5. Characteristic length-scale in polymer matrix nanocomposites;278
13.6;7.6. Conclusions and outlook;280
13.7;References;281
14;PART IV NANO- AND MICROCOMPOSITES: CHARACTERIZATION;290
15;Chapter 8 Deformation Behavior of Nanocomposites Studied by X-Ray Scattering: Instrumentation and Methodology;292
15.1;8.1. Introduction;292
15.2;8.2. Scattering theory and materials structure;295
15.2.1;8.2.1. Relation between a CDF and IDFs;298
15.3;8.3. Analysis options derived from scattering theory;299
15.3.1;8.3.1. Completeness – a preliminary note;299
15.3.2;8.3.2. Analysis options;299
15.3.3;8.3.3. Parameters, functions and operations;300
15.4;8.4. The experiment;301
15.4.1;8.4.1. Principal design;301
15.4.2;8.4.2. Engineering solutions;302
15.4.3;8.4.3. Scattering data and its evaluation;307
15.5;8.5. Techniques: Dynamic vs. stretch-hold;309
15.6;8.6. Advanced goal: Identification of mechanisms;309
15.7;8.7. Observed promising effects from stretch-hold experiments;312
15.7.1;8.7.1. Orientation of nanofibrils in highly oriented polymer blends by means of USAXS;312
15.7.2;8.7.2. USAXS studies on undrawn and highly drawn PP/PET blends;314
15.8;8.8. Choosing experiments;316
15.8.1;8.8.1. Experiments with a macrobeam;316
15.8.2;8.8.2. Experiments with a microbeam;317
15.9;8.9. Conclusion and outlook;318
15.10;References;319
16;Chapter 9 Creep and Fatigue Behavior of Polymer Nanocomposites;324
16.1;9.1. Introduction;324
16.2;9.2. Generalities on the creep behavior of viscoelastic materials;325
16.3;9.3. Generalities on the fatigue resistance of polymeric materials;329
16.4;9.4. Creep behavior of polymer nanocomposites;332
16.4.1;9.4.1. Creep response of PNCs containing one-dimensional nanofillers;332
16.4.2;9.4.2. Creep response of PNCs containing two-dimensional nanofillers;338
16.4.3;9.4.3. Creep response of PNCs containing three-dimensional nanoparticles;340
16.5;9.5. Fatigue resistance of polymer nanocomposites;344
16.5.1;9.5.1. Fatigue behavior of PNCs containing one-dimensionalnanofillers;345
16.5.2;9.5.2. Fatigue behavior of PNCs containing two-dimensional nanofillers;349
16.5.3;9.5.3. Fatigue behavior of PNCs containing three-dimensional nanoparticles;355
16.6;9.6. Conclusions and outlook;357
16.7;References;358
17;Chapter 10 Deformation Mechanisms of Functionalized Carbon Nanotube Reinforced Polymer Nanocomposites;364
17.1;10.1. Introduction;364
17.2;10.2. Deformation characteristics;366
17.2.1;10.2.1. CNT/glassy thermoplastic nanocomposites;368
17.2.2;10.2.2. CNT/semicrystalline thermoplastic nanocomposites;379
17.2.3;10.2.3. CNT/epoxy nanocomposites;385
17.2.4;10.2.4. CNT/elastomer nanocomposites;392
17.3;10.3. Conclusions;394
17.4;References;394
18;Chapter 11 Fracture Properties and Mechanisms of Polyamide/Clay Nanocomposites;400
18.1;11.1. Introduction;400
18.2;11.2. Dispersion of clay in polymers;401
18.3;11.3. Crystallization behavior;407
18.4;11.4. Fracture properties and mechanisms;410
18.4.1;11.4.1. Improved toughness in polymer/clay nanocomposites;410
18.4.2;11.4.2. Brittleness of polymer/clay nanocomposites;416
18.4.3;11.4.3. Approaches to improve fracture toughness of polymer/claynanocomposites;422
18.5;11.5. Conclusions and outlook;437
18.6;References;438
19;Chapter 12 On the Toughness of "Nanomodified" Polymers and Their Traditional Polymer Composites;448
19.1;12.1. Introduction;448
19.2;12.2. Toughness assessment;450
19.3;12.3. Nanomodified thermoplastics;451
19.3.1;12.3.1. Amorphous polymers;451
19.3.2;12.3.2. Semicrystalline polymers;455
19.4;12.4. Nanomodified thermosets;467
19.4.1;12.4.1. (Neat) Resins;467
19.4.2;12.4.2. Toughened and hybrid resins;476
19.5;12.5. Nanomodified traditional composites;479
19.5.1;12.5.1. Thermoplastic matrices;480
19.5.2;12.5.2. Thermoset matrices;480
19.6;12.6. Conclusions and outlook;483
19.7;References;484
20;Chapter 13 Micromechanics of Polymer Blends: Microhardness of Polymer Systems Containing a Soft Componentand/or Phase;494
20.1;13.1. Introduction;494
20.2;13.2. The peculiarity of polymer systems containing a soft component and/or phase;495
20.3;13.3. Comparison between measured and computed microhardness values for various systems;500
20.3.1;13.3.1. Two-component multiphase systems comprising soft phase(s) (blends of semicrystalline homopolymers);500
20.3.2;13.3.2. One-component multiphase systems containing soft phase(s) (polyblock copolymers);501
20.3.3;13.3.3. Two-component one-phase systems (miscible blends of amorphous polymers);505
20.3.4;13.3.4. Two-component two-phase amorphous systems containing a soft phase;507
20.3.5;13.3.5. One-component two-phase systems (semicrystalline polymers with Tg below room temperature);510
20.4;13.4. Main factors determining the microhardness of polymer systems containing a soft component and/or phase;512
20.4.1;13.4.1. Importance of the ratio hard/soft components (or phases);512
20.4.2;13.4.2. Crystalline or amorphous solids;513
20.4.3;13.4.3. Copolymers vs. polymer blends;515
20.4.4;13.4.4. New data on the relationship between H and Tg of amorphous polymers;516
20.4.5;13.4.5. Modified additivity law for systems containing soft component and/or phase;518
20.5;13.5. Microhardness on the interphase boundaries in polymer blends and composites and doubly injection molding processing;518
20.5.1;13.5.1. Microhardness on the interphase boundaries in polymer blends;518
20.5.2;13.5.2. Microhardness on the interphase boundaries in polymers after double injection molding processing;525
20.6;13.6. Conclusions and outlook;533
20.7;References;535
21;PART V NANOCOMPOSITES: MODELING;540
22;Chapter 14 Some Monte Carlo Simulations on Nanoparticle Reinforcement of Elastomers;542
22.1;14.1. Introduction;542
22.2;14.2. Description of simulations;543
22.2.1;14.2.1. Rotational isomeric state theory for conformation-dependent properties;543
22.2.2;14.2.2. Distribution functions;543
22.2.3;14.2.3. Applications to unfilled elastomers;544
22.2.4;14.2.4. Applications to filled elastomers;545
22.3;14.3. Spherical particles;545
22.3.1;14.3.1. Particle sizes, shapes, concentrations, and arrangements;545
22.3.2;14.3.2. Distributions of chain end-to-end distances;546
22.3.3;14.3.3. Stress-strain isotherms;548
22.3.4;14.3.4. Effects of arbitrary changes in the distributions;549
22.3.5;14.3.5. Some preliminary results on physisorption;551
22.3.6;14.3.6. Relevance of cross linking in solution;553
22.3.7;14.3.7. Detailed descriptions of conformational changes during chain extension;557
22.4;14.4. Ellipsoidal particles;557
22.4.1;14.4.1. General features;557
22.4.2;14.4.2. Oblate ellipsoids;559
22.5;14.5. Aggregated particles;560
22.5.1;14.5.1. Real systems;560
22.5.2;14.5.2. Types of aggregates for modeling;560
22.5.3;14.5.3. Deformabilities of aggregates;561
22.6;14.6. Potential refinements;561
22.7;14.7. Conclusions;561
22.8;References;562
23;Chapter 15 Modeling of Polymer Clay Nanocomposites for a Multiscale Approach;568
23.1;15.1. Introduction;568
23.2;15.2. Sequential multiscale modeling;570
23.3;15.3. Representative volume element;571
23.3.1;15.3.1. Effective elastic material properties;572
23.3.2;15.3.2. Statistical ensemble;573
23.3.3;15.3.3. Periodic boundary conditions;574
23.4;15.4. Generating RVE geometry;576
23.4.1;15.4.1. Number of platelets;576
23.4.2;15.4.2. Generation of platelet configurations;577
23.5;15.5. Periodic finite element mesh;579
23.6;15.6. Numerical solution process;581
23.6.1;15.6.1. Finite element analysis of boundary value problem;581
23.6.2;15.6.2. Ensemble averaged elastic properties;583
23.6.3;15.6.3. Automation;584
23.7;15.7. Elastic RVE numerical results;585
23.7.1;15.7.1. Fully exfoliated straight platelets;588
23.7.2;15.7.2. Effect of platelet orientation;590
23.7.3;15.7.3. Curved platelets;592
23.7.4;15.7.4. Multi-layer stacks of intercalated platelets;595
23.8;15.8. Conclusions;597
23.9;References;599
24;List of Acknowledgements;602
25;Author Index;614
26;Subject Index;620
Part 1: POLYMERS
Nano- and Micromechanics of Crystalline Polymers
Modeling Mechanical Properties of Segmented Polyurethanes
Part 2: NANOCOMPOSITES: INFLUENCE OF PREPARATION
Nanoparticles/Polymer Composites: Fabrication and Mechanical Properties
Rubber Nanocomposites: New Developments, New Opportunities
Organoclay Particulate, and Nanofibril Reinforced Polymer-Polymer Composites: Manufacturing, Modeling and Applications
Part 3: NANO- AND MICROCOMPOSITES: INTERPHASE
Viscoelasticity of Amorphous Polymer Nanocomposites with Individual Nanoparticles
The Interphase Phenomena in Polymer Micro- and Nanocomposites
Part 4: NANO- AND MICROCOMPOSITES: CHARACTERIZATION
Deformation Behavior of Nanocomposites Studied by X-ray Scattering: Instrumentation and Methodology
Creep and Fatigue Behavior of Polymer Nanocomposites
Deformation Mechanisms of Functionalized Carbon Nanotube Reinforced Polymer Nanocomposites
Fracture Properties and Mechanisms of Polyamide/Clay Nanocomposites
On the Toughness of 'Nanomodified' Polymers and Their Traditional Polymer Composites
Micromechanics of Polymer Blends: Microhardness of Polymer Systems Containing a Soft Component and/or Phase
Part 5: NANOCOMPOSITES: MODELING
Some Monte Carlo Simulations on Nanoparticle Reinforcement of Elastomers
Modeling of Polymer Clay Nanocomposites for a Multiscale Approach