Kantorovitz | Topics in Operator Semigroups | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 281, 266 Seiten

Reihe: Progress in Mathematics

Kantorovitz Topics in Operator Semigroups


2010
ISBN: 978-0-8176-4932-6
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 281, 266 Seiten

Reihe: Progress in Mathematics

ISBN: 978-0-8176-4932-6
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark



This monograph is concerned with the interplay between the theory of operator semigroups and spectral theory. The basics on operator semigroups are concisely covered in this self-contained text. Part I deals with the Hille--Yosida and Lumer--Phillips characterizations of semigroup generators, the Trotter--Kato approximation theorem, Kato's unified treatment of the exponential formula and the Trotter product formula, the Hille--Phillips perturbation theorem, and Stone's representation of unitary semigroups. Part II explores generalizations of spectral theory's connection to operator semigroups.

Kantorovitz Topics in Operator Semigroups jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Contents;7
2;Preface;10
3;General Theory;13
3.1;A Basic Theory;14
3.1.1;A.1 Overview;14
3.1.2;A.2 The Generator;16
3.1.3;A.3 Type and Spectrum;20
3.1.4;A.4 Uniform Continuity;21
3.1.5;A.5 Core for the Generator;22
3.1.6;A.6 The Resolvent;24
3.1.7;A.7 Pseudo-Resolvents;26
3.1.8;A.8 The Laplace Transform;28
3.1.9;A.9 Abstract Potentials;29
3.1.10;A.10 The Hille–Yosida Theorem;31
3.1.11;A.11 The Hille–Yosida Space;33
3.1.12;A.12 Dissipative Operators;36
3.1.13;A.13 The Trotter–Kato Convergence Theorem;39
3.1.14;A.14 Exponential Formulas;43
3.1.15;A.15 Perturbation of Generators;47
3.1.16;A.16 Groups of Operators;53
3.1.17;A.17 Bounded Groups of Operators;54
3.1.18;A.18 Stone’s Theorem;55
3.1.19;A.19 Bochner’s Theorem;58
3.2;B The Semi-Simplicity Space for Groups;60
3.2.1;B.1 The Bochner Norm;60
3.2.2;B.2 The Semi-Simplicity Space;64
3.2.3;B.3 Scalar-Type Spectral Operators;70
3.3;C Analyticity;73
3.3.1;C.1 Analytic Semigroups;73
3.3.2;C.2 The Generator of an Analytic Semigroup;75
3.4;D The Semigroup as a Function of its Generator;80
3.4.1;D.1 Noncommutative Taylor Formula;80
3.4.2;D.2 Analytic Families of Semigroups;88
3.5;E Large Parameter;96
3.5.1;E.1 Analytic Semigroups;96
3.5.2;E.2 Resolvent Iterates;99
3.5.3;E.3 Mean Stability;103
3.5.4;E.4 The Asymptotic Space;112
3.5.5;E.5 Semigroups of Isometries;116
3.5.6;E.6 The ABLV Stability Theorem;118
3.6;F Boundary Values;122
3.6.1;F.1 Regular Semigroups and Boundary Values;122
3.6.2;F.2 The Generator of a Regular Semigroup;127
3.6.3;F.3 Examples of Regular Semigroups;130
3.7;G Pre-Semigroups;140
3.7.1;G.1 The Abstract Cauchy Problem;141
3.7.2;G.2 The Exponentially Tamed Case;145
4;Integral Representations;148
4.1;A The Semi-Simplicity Space;149
4.1.1;A.1 The Real Spectrum Case;149
4.1.2;A.2 The Case R+ .(-A);162
4.2;B The Laplace–Stieltjes Space;169
4.2.1;B.1 The Laplace–Stieltjes Space;169
4.2.2;B.2 Semigroups of Closed Operators;174
4.2.3;B.3 The Integrated Laplace Space;177
4.2.4;B.4 Integrated Semigroups;181
4.3;C Families of Unbounded Symmetric Operators;184
4.3.1;C.1 Local Symmetric Semigroups;184
4.3.2;C.2 Nelson’s Analytic Vectors Theorem;188
4.3.3;C.3 Local Bounded Below Cosine Families;190
4.3.4;C.4 Local Symmetric Cosine Families;194
5;A Taste of Applications;198
5.1;Prelude;199
5.2;A Analytic Families of Evolution Systems;200
5.2.1;A.1 Coefficients Analyticity and Solutions Analyticity;200
5.2.2;A.2 Kato’s Conditions;201
5.2.3;A.3 Tanabe’s Conditions;203
5.3;B Similarity;207
5.3.1;B.1 Overview;207
5.3.2;B.2 Similarity Within the Family S + V;207
5.3.3;B.3 Similarity of Certain Perturbations;221
5.4;Miscellaneous Exercises;223
5.4.1;Abstract Landau Inequality;223
5.4.2;Variation on the Theme of Dissipativity;223
5.4.3;Resolvents of the Hille–Yosida Approximations;224
5.4.4;Adjoint Semigroup;224
5.4.5;Spectra of a Semigroup and its Generator;225
5.4.6;Compact Semigroups;226
5.4.7;Powers of the Generator;227
5.4.8;C8-semigroups;228
5.4.9;Entire Vectors;228
5.4.10;Nonhomogeneous ACP;228
5.4.11;The Graph Norm on D(A);229
5.4.12;Commutativity;229
5.4.13;Square of the Generator;229
5.4.14;Resolvents of Bounded Analytic Semigroups;230
5.4.15;A-boundedness;230
5.4.16;Unitary Vectors;231
5.4.17;Markov Semigroups;231
5.4.18;Translation Semigroup;232
5.4.19;The MacLaurin Formula for Semigroups;233
5.4.20;Restriction of Semigroup to Invariant Subspaces;233
5.4.21;Semigroups Arising from ACP;234
5.4.22;Bounded Below Semigroups;235
5.4.23;Natural Operational Calculus for Groups;235
5.4.24;Construction of Analytic Semigroups;236
5.4.25;Approximation of Co- semigroups by Uniformly Continuous Semigroups;237
5.4.26;Stability in the u.o.t;238
5.4.27;Semigroups on Hilbert Space;239
5.4.28;Stability in the u.o.t. on Hilbert Space;239
5.4.29;Hille–Yosida Space, Semi-Simplicity Space, etc.;241
5.4.30;Approximation Formula for the Integrated Semigroup;245
5.4.31;Semigroup Induced on Quotient Space;246
5.4.32;Semigroup Induced on l8(X);246
5.4.33;Semigroup Induced on a Tensor Space;247
5.4.34;Infinite Product of Semigroups;247
5.4.35;Perturbation of Generator by B B([D(A)]);248
5.4.36;Intertwining and Spectrum;249
5.4.37;Mining Lemma 2.16;250
5.4.38;The Eberlein and Schoenberg Criteria for Fourier– Stieltjes Transforms;251
5.5;Notes and References;253
5.5.1;Part I. General Theory;253
5.5.1.1;A. Basic Theory;253
5.5.1.2;B. The Semi-simplicity Space for Groups;254
5.5.1.3;C. Analyticity;254
5.5.1.4;D. The Semigroup as a Function of its Generator;254
5.5.1.5;E. Large Parameter;254
5.5.1.6;F. Boundary Values;254
5.5.1.7;G. Pre-Semigroups;254
5.5.2;Part II. Integral Representations ;255
5.5.2.1;A. The Semi-Simplicity Space;255
5.5.2.2;B. The Laplace–Stieltjes Space;255
5.5.2.3;C. Families of Unbounded Symmetric Operators;255
5.5.3;Part III. A Taste of Applications ;255
5.5.3.1;A. Dependence on Parameters;255
5.5.3.2;B. Similarity (etc.);256
6;Bibliography;257
7;Index;266



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.