Kang / Kim / Choe | Recent Progress in Mathematics | Buch | 978-981-19-3710-1 | sack.de

Buch, Englisch, Band 1, 200 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 324 g

Reihe: KIAS Springer Series in Mathematics

Kang / Kim / Choe

Recent Progress in Mathematics

Buch, Englisch, Band 1, 200 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 324 g

Reihe: KIAS Springer Series in Mathematics

ISBN: 978-981-19-3710-1
Verlag: Springer Nature Singapore


This book consists of five chapters presenting problems of current research in mathematics, with its history and development, current state, and possible future direction. Four of the chapters are expository in nature while one is based more directly on research. All deal with important areas of mathematics, however, such as algebraic geometry, topology, partial differential equations, Riemannian geometry, and harmonic analysis. This book is addressed to researchers who are interested in those subject areas. 
Young-Hoon Kiem discusses classical enumerative geometry before string theory and improvements after string theory as well as some recent advances in quantum singularity theory, Donaldson–Thomas theory for Calabi–Yau 4-folds, and Vafa–Witten invariants. 
Dongho Chae discusses the finite-time singularity problem for three-dimensional incompressible Euler equations. He presents Kato's classicallocal well-posedness results, Beale–Kato–Majda's blow-up criterion, and recent studies on the singularity problem for the 2D Boussinesq equations. 
Simon Brendle discusses recent developments that have led to a complete classi?cation of all the singularity models in a three-dimensional Riemannian manifold. He gives an alternative proof of the classi?cation of noncollapsed steady gradient Ricci solitons in dimension 3. 
Hyeonbae Kang reviews some of the developments in the Neumann–Poincare operator (NPO). His topics include visibility and invisibility via polarization tensors, the decay rate of eigenvalues and surface localization of plasmon, singular geometry and the essential spectrum, analysis of stress, and the structure of the elastic NPO.
Danny Calegari provides an explicit description of the shift locus as a complex of spaces over a contractible building. He describes the pieces in terms of dynamically extended laminations and of certain explicit “discriminant-like” a?ne algebraic varieties.
Kang / Kim / Choe Recent Progress in Mathematics jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Young-Hoon Kiem: Enumerative Geometry, before and after String Theory.- Dongho Chae: On The Singularity Problem for the Euler Equations.- Simon Brendle: Singularity Models in the Three-Dimensional Ricci Flow.- Hyeonbae Kang: Spectral Geometry and Analysis of the Neumann-Poincaré Operator, A Review.- Danny Calegari: Sausages and Butcher Paper.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.