Liebe Besucherinnen und Besucher,

heute ab 15 Uhr feiern wir unser Sommerfest und sind daher nicht erreichbar. Ab morgen sind wir wieder wie gewohnt für Sie da. Wir bitten um Ihr Verständnis – Ihr Team von Sack Fachmedien

Kang / Kan / Zhang | Machine Learning in the Analysis of Solid Deformation, Fatigue and Fracture | Buch | 978-0-443-44615-3 | sack.de

Buch, Englisch, 350 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 450 g

Kang / Kan / Zhang

Machine Learning in the Analysis of Solid Deformation, Fatigue and Fracture


Erscheinungsjahr 2026
ISBN: 978-0-443-44615-3
Verlag: Elsevier Science

Buch, Englisch, 350 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 450 g

ISBN: 978-0-443-44615-3
Verlag: Elsevier Science


Machine Learning in the Analysis of Solid Deformation, Fatigue and Fracture fills a clear gap in literature by applying machine learning to deformation, fatigue, and fracture analysis in solid mechanics. The book’s focus on complex mechanisms and coupling phenomena, discussed with practical examples, makes it a valuable resource for advanced researchers. Practical examples and case studies enable readers to understand both the underlying engineering problems and the application of machine learning methods to enhance fatigue life prediction analysis for solid materials and structures.

Kang / Kan / Zhang Machine Learning in the Analysis of Solid Deformation, Fatigue and Fracture jetzt bestellen!

Weitere Infos & Material


1. Introduction
2. Introduction to the algorithm and procedure of machine learning methods
3. Machine learning based multiscale plasticity analysis
4. Machine learning based fracture analysis of solid materials
5. Machine learning based fatigue life prediction of solid materials
6. Machine learning based solid structure analyses


Zhang, Xu
Dr Xu Zhang is a Professor at Southwest Jiaotong University, and Doctoral Supervisor. He was selected for the National High-Level Young Talent Program (in 2022) and is a Humboldt Fellow. He is also a recipient of the International Journal of Plasticity Young Researcher Award. His research primarily focuses on multiscale mechanics of advanced metallic materials. He has published over 90 SCI papers

Hu, Ya-Nan
Dr Ya-Nan Hu is an Associate Professor at Southwest Jiaotong University. Dr Hu's research focuses on the fatigue and fracture behavior of welding and additive manufacturing materials, as well as in situ characterization of material fatigue damage behavior using advanced synchrotron radiation. As the first author or corresponding author, she has published over 20 papers

Kan, Qianhua
Qianhua Kan, Ph.D. in Solid Mechanics, Chair Professor at Southwest Jiaotong University, and Doctoral Supervisor. He was selected as a National High-Level Talents Recruitment Program candidate (2023). He has long been engaged in research on wheel-rail rolling contact fatigue and multi-field coupled fatigue of smart materials. He has published over 200 SCI-indexed papers, with more than 4, 000 citations by others, and has been included in Stanford University's list of the top 2% of global scientists. He has authored three monographs in both Chinese and English, as well as six textbooks. He has received the Second Prize of the Natural Science Award from the Ministry of Education and the Second Prize of the National Teaching Achievement Award

Kang, Guozheng
Guozheng Kang is Chair and Professor of Mechanics at Southwest Jiaotong University, China. He is also vice president of Southwest Jiaotong University. His research activities focus on cyclic plasticity and visco-plasticity, fatigue failure and life prediction, low-cycle fatigue, multiaxial fatigue, fretting fatigue, rolling contact fatigue and ratcheting-fatigue interaction for metallic and polymeric materials, as well as the thermo-mechanical fatigue of shape memory alloys. He has been the author/co-author of more than 400 research publications in refereed international journals and conference proceedings



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.