Kamrani / Nasr | Collaborative Engineering | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 287 Seiten

Kamrani / Nasr Collaborative Engineering

Theory and Practice
1. Auflage 2008
ISBN: 978-0-387-47321-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Theory and Practice

E-Book, Englisch, 287 Seiten

ISBN: 978-0-387-47321-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This superb study offers insights into the methods and techniques that enable the implementation of a Collaborative Engineering concept on product design. It does so by integrating capabilities for intelligent information support and group decision-making, utilizing a common enterprise network model and knowledge interface through shared ontologies. The book is also a collection of the latest applied methods and technology from selected experts in this area.

Kamrani / Nasr Collaborative Engineering jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Table of Content;11
3;List of Authors;13
4;Table of Figures;15
5;Chapter 1;19
5.1;Collaborative Design Approach in Product Design and Development;19
5.1.1;1.1 Integrated Product Development;20
5.1.2;1.2 Collaborative Design and Development;22
5.1.3;1.3 Case Study: Design of Single-Stage Spur Gearbox;26
5.1.3.1;1.3.1 System Overview;26
5.1.4;1.4 System Structure and the Components;28
5.1.4.1;1.4.1 Collaborative Environment;29
5.1.4.2;1.4.2 Analysis Phase;30
5.1.4.3;1.4.3 Optimization Phase;30
5.1.4.4;1.4.4 Parametric CAD Modeling;32
5.1.5;1.5 Conclusions;34
5.1.6;References;34
6;Chapter 2;36
6.1;Template-Based Integrated Design: A Case Study;36
6.1.1;2.1 Introduction;36
6.1.2;2.2 Problem Description;37
6.1.3;2.3 Problem Solution;37
6.1.4;2.4 Electric Motor;39
6.1.5;2.5 Design Calculations;39
6.1.6;2.6 CAD Modeler;41
6.1.7;2.7 Process Planning;42
6.1.8;2.8 Cost and Time Analysis;42
6.1.9;2.9 System Components;44
6.1.10;2.10 Design Calculations;45
6.1.11;2.11 Bearing Selection;47
6.1.11.1;2.11.1 Bearing Life Calculations for Spherical Ball Bearings;47
6.1.11.2;2.11.2 Bearing Life Calculations for Cylindrical Roller Bearings;48
6.1.11.3;2.11.3 Bearing Life Calculations for Angular Contact Bearings;48
6.1.12;2.12 Bearing Search;48
6.1.13;2.13 Design Template Retrieval;49
6.1.14;2.14 Machine Selection and Process Cost Estimations;49
6.1.15;2.15 Case Studies;52
6.1.15.1;2.15.1 Case Study 2.1;52
6.1.15.2;2.15.2 Case Study 2.2;53
6.1.16;References;57
7;Chapter 3;59
7.1;Six Sigma: Continuous Improvement Toward Excellence;59
7.1.1;3.1 What is Six Sigma?;59
7.1.2;3.2 Why Six Sigma?;61
7.1.3;3.3 How is Six Sigma implemented?;63
7.1.3.1;3.3.1 Critical Success Factors;63
7.1.3.2;3.3.2 Deployment Roles and Training;64
7.1.4;3.4 Six Sigma Process Improvement—The DMAIC(T) Process;65
7.1.4.1;3.4.1 The DMAIC(T) Process;66
7.1.4.1.1;3.4.1.1 Phase 0: Define (D);66
7.1.4.1.2;3.4.1.2 Phase 1: Measure (M);66
7.1.4.1.3;3.4.1.3 Phase 2: Analyze (A);67
7.1.4.1.4;3.4.1.4 Phase 3: Improve (I);69
7.1.4.1.5;3.4.1.5 Phase 4: Control (C);69
7.1.4.1.6;3.4.1.6 Phase µ: Technology transfer;70
7.1.4.2;3.4.2 The Toolbox for the DMAIC(T) Process;70
7.1.5;3.5 Design for Six Sigma;72
7.1.6;3.6 Case Study;73
7.1.6.1;3.6.1 Define Phase;74
7.1.6.2;3.6.2 Measure Phase;74
7.1.6.3;3.6.3 Analyze Phase;74
7.1.6.4;3.6.4 Improve Phase;75
7.1.6.5;3.6.5 Control Phase;75
7.1.6.6;3.6.6 Technology Transfer Phase;75
7.1.6.7;3.7 Conclusion and Future Trends;75
7.1.7;References;76
8;Chapter 4;77
8.1;Supply Chain Workflow Modeling Using Ontologies;77
8.1.1;4.1 Introduction;77
8.1.2;4.2 Background and Motivation;78
8.1.3;4.3 Literature Survey;80
8.1.3.1;4.3.1 Workflow Modeling;80
8.1.3.2;4.3.2 Ontology Engineering;81
8.1.3.3;4.3.3 Knowledge-Intensive Workflow Management;82
8.1.4;4.4 Conceptual Framework;82
8.1.4.1;4.4.1 Supply Chain Workflow Modeling;82
8.1.4.1.1;4.4.1.1 Supply Chain Operations Reference Model;83
8.1.4.1.2;4.4.1.2 Process Modeling;84
8.1.4.2;4.4.2 Ontology Engineering;85
8.1.5;4.5 Supply Chain Knowledge Modeling: A Meta Model for Process Integration;87
8.1.5.1;4.5.1 SCOR Ontology;88
8.1.5.2;4.5.2 Workflow Ontology;89
8.1.6;4.6 Ontology Language: Introduction to a Specification;90
8.1.6.1;4.6.1 Frame-Based Logic;91
8.1.6.2;4.6.2 First-Order Logic;91
8.1.6.3;4.6.3 Web Standards;92
8.1.6.4;4.6.4 Specification in Ontology Language—Terminology;93
8.1.6.4.1;4.6.4.1 Organization Ontology;93
8.1.6.4.2;4.6.4.2 Problem Ontology;93
8.1.6.5;4.6.5 Supply Chain Markup Language;94
8.1.7;4.7 Case Study: Automotive Industry Supply Chain;94
8.1.7.1;4.7.1 Problem Statement;95
8.1.7.2;4.7.2 Supply Chain Model;96
8.1.7.2.1;4.7.2.1 M3.2—Schedule Production Activity Process Model;97
8.1.7.3;4.7.3 Supply Chain Ontology Engineering;99
8.1.8;4.8 Conclusion;101
8.1.9;References;102
9;Chapter 5;104
9.1;Data-Mining Process Overview;104
9.1.1;5.1 Introduction;104
9.1.2;5.2 Data Mining;105
9.1.3;5.3 Data-Mining Methodology;107
9.1.4;5.4 Problem Definition;108
9.1.5;5.5 Acquisition of Background Knowledge;109
9.1.6;5.6 Selection of Data;110
9.1.7;5.7 Preprocessing of Data;110
9.1.8;5.8 Analysis and Interpretation;111
9.1.9;5.9 Reporting and Use;111
9.1.10;5.10 Data-Mining Techniques;112
9.1.11;5.11 Conclusions;116
9.1.12;References;116
10;Chapter 6;118
10.1;Intelligent Design and Manufacturing;118
10.1.1;6.1 Introduction;118
10.1.2;6.2 Problem Statement;119
10.1.3;6.3 Literature Review;120
10.1.3.1;6.3.1 Feature Representation by B-Rep;121
10.1.3.2;6.3.2 Feature Representation by constructive solid geometry;122
10.1.3.3;6.3.3 Feature Recognition Techniques;122
10.1.4;6.4 The Proposed Methodology;124
10.1.4.1;6.4.1 Conversion of Computer-Aided Design Data Files to Object-Oriented Data Structure;126
10.1.4.2;6.4.2 The Overall Object-Oriented Data Structure of the Proposed Methodology;126
10.1.4.2.1;6.4.2.1 Classification of Edges;128
10.1.4.2.2;6.4.2.2 Classification of Loops;129
10.1.4.3;6.4.3 Definition of the Data Fields of the Proposed Data Structure;129
10.1.4.4;6.4.4 Algorithms for Extracting Geometric Entities from CAD File;131
10.1.4.4.1;6.4.4.1 Algorithm for Extracting Entries from Directory and Parameter Sections;131
10.1.4.5;6.4.5 Extracting Form Features from Computer-Aided Design Files;132
10.1.4.5.1;6.4.5.1 Algorithm for Determination the Concavity of the Edge;134
10.1.4.5.2;6.4.5.2 Algorithms for Feature Extraction (Production Rules);134
10.1.5;6.5 Illustrative Example;135
10.1.6;6.6 Conclusion;136
10.1.7;References;138
11;Chapter 7;141
11.1;Rapid Manufacturing;141
11.1.1;7.1 Rapid Manufacturing;141
11.1.1.1;7.1.1 Applications of Rapid Manufacturing;142
11.1.1.1.1;7.1.1.1 Tooling and Industrial Applications;142
11.1.1.1.2;7.1.1.2 Aerospace;142
11.1.1.1.3;7.1.1.3 Architecture and Construction;143
11.1.1.1.4;7.1.1.4 Military;143
11.1.1.1.5;7.1.1.5 Medical Applications;143
11.1.1.1.6;7.1.1.6 Electronics and Photonics;143
11.1.1.2;7.1.2 Rapid Manufacturing’s Advantages and Disadvantages;144
11.1.1.2.1;7.1.2.1 Advantages;144
11.1.1.2.2;7.1.2.2 Disadvantages;144
11.1.2;7.2 Rapid Manufacturing Errors;145
11.1.2.1;7.2.1 Preprocess Error;145
11.1.2.2;7.2.2 Process Error;146
11.1.2.3;7.2.3 Postprocess Error;147
11.1.3;7.3 Computer-Aided Rapid Manufacturing;147
11.1.3.1;7.3.1 Path Generation by Use of Drawing Exchange Format File;147
11.1.3.2;7.3.2 Path Generation by Use of STL File;154
11.1.3.2.1;7.3.2.1 Step 1—Slicing Algorithm;154
11.1.3.2.2;7.3.2.2 Step 2—Tool Path Generation;156
11.1.3.2.3;7.3.2.3 Implementation;156
11.1.3.3;7.3.3 Path Generation by Use of STEP File;157
11.1.3.3.1;7.3.3.1 Application Protocols;157
11.1.3.3.2;7.3.3.2 Boundary Representation Model;159
11.1.3.3.3;7.3.3.3 Using STEP for Tool Path Generation;159
11.1.3.4;7.3.4 Rapid Manufacturing Process Selection and Simulation;161
11.1.4;7.4 Rapid Manufacturing Prospects;165
11.1.5;References;165
12;Chapter 8;167
12.1;Simulation-Based Optimization: A Case Study for Airline’s Cargo Service Call Center ;167
12.1.1;8.1 Introduction;167
12.1.2;8.2 Literature Review;169
12.1.2.1; 8.2.1 Literature Review for Simulation-Based Optimization and RL;169
12.1.2.2;8.2.2 Literature Review for Service Call Center Staff Planning;170
12.1.3; 8.3 Simulation-Based Optimization: Rl Technique ;171
12.1.3.1;8.3.1 Sequential Decision-Making System and Markov Decision Process;171
12.1.3.1.1;8.3.1.1 Value Iteration Algorithm;173
12.1.3.2;8.3.2 RL Technique;174
12.1.3.2.1;8.3.2.1 Basic RL Procedure for Discounted MDP;176
12.1.4;8.4 Case Study on Airline’s Cargo Service Call Center Planning;177
12.1.4.1;8.4.1 Data Collection and Analysis for Constructing the Simulation Model;179
12.1.4.2;8.4.2 RL Model for the Service Call Center Problems;180
12.1.4.3;8.4.3 Case Study Result and Performance Comparison;181
12.1.5;8.5 Summary;184
12.1.6;References;185
13;Chapter 9;187
13.1;Robotics and Autonomous Robots;187
13.1.1;9.1 Introduction To Robotics;187
13.1.1.1;9.1.1 Application of Robots;188
13.1.1.1.1;9.1.1.1 Manufacturing Applications;188
13.1.1.1.2;9.1.1.2 Assembly and Packaging Applications;189
13.1.1.1.3;9.1.1.3 Remote and Hazardous Operations;189
13.1.1.1.4;9.1.1.4 Healthcare Applications;190
13.1.1.2;9.1.2 Classes of Robots;192
13.1.1.2.1;9.1.2.1 Cartesian Coordinate Robots;192
13.1.1.2.2;9.1.2.2 Cylindrical Coordinate Robots;193
13.1.1.2.3;9.1.2.3 Spherical Coordinate Robots;193
13.1.1.2.4;9.1.2.4 Articulated Coordinate Robots;194
13.1.1.2.5;9.1.2.5 SCARA Robots;194
13.1.1.3;9.1.3 Components of Robots;194
13.1.1.3.1;9.1.3.1 Body/Main Frame;194
13.1.1.3.2;9.1.3.2 Actuators;194
13.1.1.3.3;9.1.3.3 Sensors;195
13.1.1.3.4;9.1.3.4 Controllers;195
13.1.1.3.5;9.1.3.5 End Effector;195
13.1.1.3.6;9.1.3.6 Computer Processor/Operating Systems;195
13.1.1.3.7;9.1.3.7 Robot Workspace;196
13.1.2;9.2 Robot Kinematics;196
13.1.2.1;9.2.1 Representation of Translating Bodies;197
13.1.2.1.1;9.2.1.1 Representation of a Point and a Vector in 3-D Space;197
13.1.2.1.2;9.2.1.2 Rotation Matrices;198
13.1.2.1.3;9.2.1.3 Rotation About the OX -Axis;200
13.1.2.1.4;9.2.1.4 Rotation About the OY -Axis;201
13.1.2.1.5;9.2.1.5 Rotation About the OZ -Axis;201
13.1.2.1.6;9.2.1.6 Combination of the Rotation Matrices;204
13.1.3;9.3 Homogenous Representation;205
13.1.4;9.4 Forward or Direct Kinematics;207
13.1.5;9.5 Reverse of Indirect Kinematics;211
13.1.6;9.6 Robot Vision;212
13.1.6.1;9.6.1 Image Transformation/Image Processing;213
13.1.6.1.1;9.6.1.1 Histogram;213
13.1.6.1.2;9.6.1.2 Thresholding;213
13.1.6.1.3;9.6.1.3 Connectivity;213
13.1.6.1.4;9.6.1.4 Noise Reduction;214
13.1.6.1.5;9.6.1.5 Image Averaging;215
13.1.6.1.6;9.6.1.6 Edge Detection;215
13.1.6.1.7;9.6.1.7 Neighborhood Averaging;216
13.1.6.1.8;9.6.1.8 Hough Transform;216
13.1.6.2;9.6.2 Vision and Image Processing for Autonomous Robots;216
13.1.6.2.1;9.6.2.1 Timeliness Constraint;216
13.1.6.2.2;9.6.2.2 Fixed Frame Rate Image Streams;217
13.1.6.2.3;9.6.2.3 Development Model;217
13.1.6.2.4;9.6.2.4 Depth Measurement with Vision Systems;217
13.1.6.3;9.6.3 Position Visual Servoing (Robot Visual Control);217
13.1.6.3.1;9.6.3.1 Pose Control;218
13.1.6.3.2;9.6.3.2 Pose Estimation;218
13.1.7;9.7 Conclusion;219
13.2;References;219
14;Chapter 10;221
14.1;Modular Design;221
14.1.1;10.1 Modularity;221
14.1.1.1;10.1.1 Modularity in Products;221
14.1.1.2;10.1.2 Modularity in Design Problems;222
14.1.1.3;10.1.3 Modularity in Production Systems;222
14.1.2;10.2 Modular Systems Characteristics;223
14.1.2.1;10.2.1 Modules Types;223
14.1.2.2;10.2.2 Modularity Types;224
14.1.2.2.1;10.2.2.1 Function-Based Modularity;224
14.1.2.2.2;10.2.2.2 Manufacturing-Based Modularity;225
14.1.3;10.3 Modular Systems Development;227
14.1.3.1;10.3.1 Decomposition Categories;227
14.1.3.1.1;10.3.1.1 Product Decomposition;228
14.1.3.1.2;10.3.1.2 Problem Decomposition;228
14.1.3.1.3;10.3.1.3 Process Decomposition;229
14.1.3.2;10.3.2 Component Grouping into Modules;232
14.1.4;10.4 Modular Product Design;232
14.1.4.1;10.4.1 Needs Analysis;233
14.1.4.2;10.4.2 Product Requirements Analysis;233
14.1.4.3;10.4.3 Product/Concept Analysis;233
14.1.4.4;10.4.4 Product Concept Integration;234
14.1.4.4.1;10.4.4.1 Identify System-Level Specifications;234
14.1.4.4.2;10.4.4.2 Identify the Impact of the System-Level Specifications on the General Functional Requirements;235
14.1.4.4.3;10.4.4.3 Calculate Similarity Index;236
14.1.4.4.4;10.4.4.4 Group Components into Modules;237
14.1.5;10.5 The Benefits of Product Modularity;239
14.2;References;240
15;Chapter 11;241
15.1;Manufacturing Complexity Analysis: A Simulation-Based Methodology;241
15.1.1;11.1 Introduction;241
15.1.2;11.2 Product Variety;242
15.1.3;11.3 Manufacturing Complexity;243
15.1.4;11.4 Mixed-Model Assembly;245
15.1.5;11.5 Impact of Product Variety on Manufacturing Costs;248
15.1.6;11.6 Problem Overview;249
15.1.7;11.7 Simulation-Based Methodology;250
15.1.8;11.8 Experimentations and Results;255
15.1.8.1;11.8.1 Daily Production Sequence with Shift Replenishment;256
15.1.8.2;11.8.2 Monthly Production Sequence with Hourly Replenishment;258
15.1.9;11.9 Conclusion;260
15.1.10;References;260
16;Chapter 12;263
16.1;Designing Cellular Manufacturing for Next Generation Production Systems;263
16.1.1;12.1 Introduction;264
16.1.2;12.2 Literature Review;265
16.1.2.1;12.2.1 Strategy;265
16.1.2.1.1;12.2.1.1 Cell Formation Strategy;265
16.1.2.1.2;12.2.1.2 Cell Formation Techniques;265
16.1.2.2;12.2.2 Elements of Cell Formation;266
16.1.2.2.1;12.2.2.1 Design Objectives;267
16.1.2.2.2;12.2.2.2 Design Constraints;267
16.1.2.2.3;12.2.2.3 Practical Issues;267
16.1.2.2.3.1;Production Issues;267
16.1.2.2.3.2;Flexibility Issues;268
16.1.2.3;12.2.3 Similarity Coefficients;270
16.1.3;12.3 The Proposed Cell Formation Strategy;271
16.1.3.1;12.3.1 Phase 1: Grouping Machines into Machine Cells;272
16.1.3.2;12.3.2 Phase 2: Assigning Parts to Part Families;273
16.1.3.3;12.3.3 Phase 3: Initial Formation of Manufacturing Cells;274
16.1.3.4;12.3.4 Phase 4: Performance Evaluation;275
16.1.3.5;12.3.5 Phase 5: Revise or Improve the Initial Manufacturing Cell Formation;275
16.1.4;12.4 A Numerical Example;276
16.1.4.1;12.4.1 Phase 1: Grouping Machines into Machine Cells;276
16.1.4.2;12.4.2 Phase 2: Grouping Parts into Part Families;281
16.1.4.3;12.4.3 Phase 3: Initial Formation of Manufacturing Cells;283
16.1.4.4;12.4.4 Phase 4: Performance Evaluation;285
16.1.4.5;12.4.5 Phase 5: Revise or Improve the Initial Manufacturing Cell Formation;285
16.1.5;12.5 Results And Discussion;287
16.1.6;12.6 Conclusions;288
17;Index;296



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.