E-Book, Englisch, 287 Seiten
Kamrani / Nasr Collaborative Engineering
1. Auflage 2008
ISBN: 978-0-387-47321-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Theory and Practice
E-Book, Englisch, 287 Seiten
ISBN: 978-0-387-47321-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
This superb study offers insights into the methods and techniques that enable the implementation of a Collaborative Engineering concept on product design. It does so by integrating capabilities for intelligent information support and group decision-making, utilizing a common enterprise network model and knowledge interface through shared ontologies. The book is also a collection of the latest applied methods and technology from selected experts in this area.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Table of Content;11
3;List of Authors;13
4;Table of Figures;15
5;Chapter 1;19
5.1;Collaborative Design Approach in Product Design and Development;19
5.1.1;1.1 Integrated Product Development;20
5.1.2;1.2 Collaborative Design and Development;22
5.1.3;1.3 Case Study: Design of Single-Stage Spur Gearbox;26
5.1.3.1;1.3.1 System Overview;26
5.1.4;1.4 System Structure and the Components;28
5.1.4.1;1.4.1 Collaborative Environment;29
5.1.4.2;1.4.2 Analysis Phase;30
5.1.4.3;1.4.3 Optimization Phase;30
5.1.4.4;1.4.4 Parametric CAD Modeling;32
5.1.5;1.5 Conclusions;34
5.1.6;References;34
6;Chapter 2;36
6.1;Template-Based Integrated Design: A Case Study;36
6.1.1;2.1 Introduction;36
6.1.2;2.2 Problem Description;37
6.1.3;2.3 Problem Solution;37
6.1.4;2.4 Electric Motor;39
6.1.5;2.5 Design Calculations;39
6.1.6;2.6 CAD Modeler;41
6.1.7;2.7 Process Planning;42
6.1.8;2.8 Cost and Time Analysis;42
6.1.9;2.9 System Components;44
6.1.10;2.10 Design Calculations;45
6.1.11;2.11 Bearing Selection;47
6.1.11.1;2.11.1 Bearing Life Calculations for Spherical Ball Bearings;47
6.1.11.2;2.11.2 Bearing Life Calculations for Cylindrical Roller Bearings;48
6.1.11.3;2.11.3 Bearing Life Calculations for Angular Contact Bearings;48
6.1.12;2.12 Bearing Search;48
6.1.13;2.13 Design Template Retrieval;49
6.1.14;2.14 Machine Selection and Process Cost Estimations;49
6.1.15;2.15 Case Studies;52
6.1.15.1;2.15.1 Case Study 2.1;52
6.1.15.2;2.15.2 Case Study 2.2;53
6.1.16;References;57
7;Chapter 3;59
7.1;Six Sigma: Continuous Improvement Toward Excellence;59
7.1.1;3.1 What is Six Sigma?;59
7.1.2;3.2 Why Six Sigma?;61
7.1.3;3.3 How is Six Sigma implemented?;63
7.1.3.1;3.3.1 Critical Success Factors;63
7.1.3.2;3.3.2 Deployment Roles and Training;64
7.1.4;3.4 Six Sigma Process Improvement—The DMAIC(T) Process;65
7.1.4.1;3.4.1 The DMAIC(T) Process;66
7.1.4.1.1;3.4.1.1 Phase 0: Define (D);66
7.1.4.1.2;3.4.1.2 Phase 1: Measure (M);66
7.1.4.1.3;3.4.1.3 Phase 2: Analyze (A);67
7.1.4.1.4;3.4.1.4 Phase 3: Improve (I);69
7.1.4.1.5;3.4.1.5 Phase 4: Control (C);69
7.1.4.1.6;3.4.1.6 Phase µ: Technology transfer;70
7.1.4.2;3.4.2 The Toolbox for the DMAIC(T) Process;70
7.1.5;3.5 Design for Six Sigma;72
7.1.6;3.6 Case Study;73
7.1.6.1;3.6.1 Define Phase;74
7.1.6.2;3.6.2 Measure Phase;74
7.1.6.3;3.6.3 Analyze Phase;74
7.1.6.4;3.6.4 Improve Phase;75
7.1.6.5;3.6.5 Control Phase;75
7.1.6.6;3.6.6 Technology Transfer Phase;75
7.1.6.7;3.7 Conclusion and Future Trends;75
7.1.7;References;76
8;Chapter 4;77
8.1;Supply Chain Workflow Modeling Using Ontologies;77
8.1.1;4.1 Introduction;77
8.1.2;4.2 Background and Motivation;78
8.1.3;4.3 Literature Survey;80
8.1.3.1;4.3.1 Workflow Modeling;80
8.1.3.2;4.3.2 Ontology Engineering;81
8.1.3.3;4.3.3 Knowledge-Intensive Workflow Management;82
8.1.4;4.4 Conceptual Framework;82
8.1.4.1;4.4.1 Supply Chain Workflow Modeling;82
8.1.4.1.1;4.4.1.1 Supply Chain Operations Reference Model;83
8.1.4.1.2;4.4.1.2 Process Modeling;84
8.1.4.2;4.4.2 Ontology Engineering;85
8.1.5;4.5 Supply Chain Knowledge Modeling: A Meta Model for Process Integration;87
8.1.5.1;4.5.1 SCOR Ontology;88
8.1.5.2;4.5.2 Workflow Ontology;89
8.1.6;4.6 Ontology Language: Introduction to a Specification;90
8.1.6.1;4.6.1 Frame-Based Logic;91
8.1.6.2;4.6.2 First-Order Logic;91
8.1.6.3;4.6.3 Web Standards;92
8.1.6.4;4.6.4 Specification in Ontology Language—Terminology;93
8.1.6.4.1;4.6.4.1 Organization Ontology;93
8.1.6.4.2;4.6.4.2 Problem Ontology;93
8.1.6.5;4.6.5 Supply Chain Markup Language;94
8.1.7;4.7 Case Study: Automotive Industry Supply Chain;94
8.1.7.1;4.7.1 Problem Statement;95
8.1.7.2;4.7.2 Supply Chain Model;96
8.1.7.2.1;4.7.2.1 M3.2—Schedule Production Activity Process Model;97
8.1.7.3;4.7.3 Supply Chain Ontology Engineering;99
8.1.8;4.8 Conclusion;101
8.1.9;References;102
9;Chapter 5;104
9.1;Data-Mining Process Overview;104
9.1.1;5.1 Introduction;104
9.1.2;5.2 Data Mining;105
9.1.3;5.3 Data-Mining Methodology;107
9.1.4;5.4 Problem Definition;108
9.1.5;5.5 Acquisition of Background Knowledge;109
9.1.6;5.6 Selection of Data;110
9.1.7;5.7 Preprocessing of Data;110
9.1.8;5.8 Analysis and Interpretation;111
9.1.9;5.9 Reporting and Use;111
9.1.10;5.10 Data-Mining Techniques;112
9.1.11;5.11 Conclusions;116
9.1.12;References;116
10;Chapter 6;118
10.1;Intelligent Design and Manufacturing;118
10.1.1;6.1 Introduction;118
10.1.2;6.2 Problem Statement;119
10.1.3;6.3 Literature Review;120
10.1.3.1;6.3.1 Feature Representation by B-Rep;121
10.1.3.2;6.3.2 Feature Representation by constructive solid geometry;122
10.1.3.3;6.3.3 Feature Recognition Techniques;122
10.1.4;6.4 The Proposed Methodology;124
10.1.4.1;6.4.1 Conversion of Computer-Aided Design Data Files to Object-Oriented Data Structure;126
10.1.4.2;6.4.2 The Overall Object-Oriented Data Structure of the Proposed Methodology;126
10.1.4.2.1;6.4.2.1 Classification of Edges;128
10.1.4.2.2;6.4.2.2 Classification of Loops;129
10.1.4.3;6.4.3 Definition of the Data Fields of the Proposed Data Structure;129
10.1.4.4;6.4.4 Algorithms for Extracting Geometric Entities from CAD File;131
10.1.4.4.1;6.4.4.1 Algorithm for Extracting Entries from Directory and Parameter Sections;131
10.1.4.5;6.4.5 Extracting Form Features from Computer-Aided Design Files;132
10.1.4.5.1;6.4.5.1 Algorithm for Determination the Concavity of the Edge;134
10.1.4.5.2;6.4.5.2 Algorithms for Feature Extraction (Production Rules);134
10.1.5;6.5 Illustrative Example;135
10.1.6;6.6 Conclusion;136
10.1.7;References;138
11;Chapter 7;141
11.1;Rapid Manufacturing;141
11.1.1;7.1 Rapid Manufacturing;141
11.1.1.1;7.1.1 Applications of Rapid Manufacturing;142
11.1.1.1.1;7.1.1.1 Tooling and Industrial Applications;142
11.1.1.1.2;7.1.1.2 Aerospace;142
11.1.1.1.3;7.1.1.3 Architecture and Construction;143
11.1.1.1.4;7.1.1.4 Military;143
11.1.1.1.5;7.1.1.5 Medical Applications;143
11.1.1.1.6;7.1.1.6 Electronics and Photonics;143
11.1.1.2;7.1.2 Rapid Manufacturing’s Advantages and Disadvantages;144
11.1.1.2.1;7.1.2.1 Advantages;144
11.1.1.2.2;7.1.2.2 Disadvantages;144
11.1.2;7.2 Rapid Manufacturing Errors;145
11.1.2.1;7.2.1 Preprocess Error;145
11.1.2.2;7.2.2 Process Error;146
11.1.2.3;7.2.3 Postprocess Error;147
11.1.3;7.3 Computer-Aided Rapid Manufacturing;147
11.1.3.1;7.3.1 Path Generation by Use of Drawing Exchange Format File;147
11.1.3.2;7.3.2 Path Generation by Use of STL File;154
11.1.3.2.1;7.3.2.1 Step 1—Slicing Algorithm;154
11.1.3.2.2;7.3.2.2 Step 2—Tool Path Generation;156
11.1.3.2.3;7.3.2.3 Implementation;156
11.1.3.3;7.3.3 Path Generation by Use of STEP File;157
11.1.3.3.1;7.3.3.1 Application Protocols;157
11.1.3.3.2;7.3.3.2 Boundary Representation Model;159
11.1.3.3.3;7.3.3.3 Using STEP for Tool Path Generation;159
11.1.3.4;7.3.4 Rapid Manufacturing Process Selection and Simulation;161
11.1.4;7.4 Rapid Manufacturing Prospects;165
11.1.5;References;165
12;Chapter 8;167
12.1;Simulation-Based Optimization: A Case Study for Airline’s Cargo Service Call Center ;167
12.1.1;8.1 Introduction;167
12.1.2;8.2 Literature Review;169
12.1.2.1; 8.2.1 Literature Review for Simulation-Based Optimization and RL;169
12.1.2.2;8.2.2 Literature Review for Service Call Center Staff Planning;170
12.1.3; 8.3 Simulation-Based Optimization: Rl Technique ;171
12.1.3.1;8.3.1 Sequential Decision-Making System and Markov Decision Process;171
12.1.3.1.1;8.3.1.1 Value Iteration Algorithm;173
12.1.3.2;8.3.2 RL Technique;174
12.1.3.2.1;8.3.2.1 Basic RL Procedure for Discounted MDP;176
12.1.4;8.4 Case Study on Airline’s Cargo Service Call Center Planning;177
12.1.4.1;8.4.1 Data Collection and Analysis for Constructing the Simulation Model;179
12.1.4.2;8.4.2 RL Model for the Service Call Center Problems;180
12.1.4.3;8.4.3 Case Study Result and Performance Comparison;181
12.1.5;8.5 Summary;184
12.1.6;References;185
13;Chapter 9;187
13.1;Robotics and Autonomous Robots;187
13.1.1;9.1 Introduction To Robotics;187
13.1.1.1;9.1.1 Application of Robots;188
13.1.1.1.1;9.1.1.1 Manufacturing Applications;188
13.1.1.1.2;9.1.1.2 Assembly and Packaging Applications;189
13.1.1.1.3;9.1.1.3 Remote and Hazardous Operations;189
13.1.1.1.4;9.1.1.4 Healthcare Applications;190
13.1.1.2;9.1.2 Classes of Robots;192
13.1.1.2.1;9.1.2.1 Cartesian Coordinate Robots;192
13.1.1.2.2;9.1.2.2 Cylindrical Coordinate Robots;193
13.1.1.2.3;9.1.2.3 Spherical Coordinate Robots;193
13.1.1.2.4;9.1.2.4 Articulated Coordinate Robots;194
13.1.1.2.5;9.1.2.5 SCARA Robots;194
13.1.1.3;9.1.3 Components of Robots;194
13.1.1.3.1;9.1.3.1 Body/Main Frame;194
13.1.1.3.2;9.1.3.2 Actuators;194
13.1.1.3.3;9.1.3.3 Sensors;195
13.1.1.3.4;9.1.3.4 Controllers;195
13.1.1.3.5;9.1.3.5 End Effector;195
13.1.1.3.6;9.1.3.6 Computer Processor/Operating Systems;195
13.1.1.3.7;9.1.3.7 Robot Workspace;196
13.1.2;9.2 Robot Kinematics;196
13.1.2.1;9.2.1 Representation of Translating Bodies;197
13.1.2.1.1;9.2.1.1 Representation of a Point and a Vector in 3-D Space;197
13.1.2.1.2;9.2.1.2 Rotation Matrices;198
13.1.2.1.3;9.2.1.3 Rotation About the OX -Axis;200
13.1.2.1.4;9.2.1.4 Rotation About the OY -Axis;201
13.1.2.1.5;9.2.1.5 Rotation About the OZ -Axis;201
13.1.2.1.6;9.2.1.6 Combination of the Rotation Matrices;204
13.1.3;9.3 Homogenous Representation;205
13.1.4;9.4 Forward or Direct Kinematics;207
13.1.5;9.5 Reverse of Indirect Kinematics;211
13.1.6;9.6 Robot Vision;212
13.1.6.1;9.6.1 Image Transformation/Image Processing;213
13.1.6.1.1;9.6.1.1 Histogram;213
13.1.6.1.2;9.6.1.2 Thresholding;213
13.1.6.1.3;9.6.1.3 Connectivity;213
13.1.6.1.4;9.6.1.4 Noise Reduction;214
13.1.6.1.5;9.6.1.5 Image Averaging;215
13.1.6.1.6;9.6.1.6 Edge Detection;215
13.1.6.1.7;9.6.1.7 Neighborhood Averaging;216
13.1.6.1.8;9.6.1.8 Hough Transform;216
13.1.6.2;9.6.2 Vision and Image Processing for Autonomous Robots;216
13.1.6.2.1;9.6.2.1 Timeliness Constraint;216
13.1.6.2.2;9.6.2.2 Fixed Frame Rate Image Streams;217
13.1.6.2.3;9.6.2.3 Development Model;217
13.1.6.2.4;9.6.2.4 Depth Measurement with Vision Systems;217
13.1.6.3;9.6.3 Position Visual Servoing (Robot Visual Control);217
13.1.6.3.1;9.6.3.1 Pose Control;218
13.1.6.3.2;9.6.3.2 Pose Estimation;218
13.1.7;9.7 Conclusion;219
13.2;References;219
14;Chapter 10;221
14.1;Modular Design;221
14.1.1;10.1 Modularity;221
14.1.1.1;10.1.1 Modularity in Products;221
14.1.1.2;10.1.2 Modularity in Design Problems;222
14.1.1.3;10.1.3 Modularity in Production Systems;222
14.1.2;10.2 Modular Systems Characteristics;223
14.1.2.1;10.2.1 Modules Types;223
14.1.2.2;10.2.2 Modularity Types;224
14.1.2.2.1;10.2.2.1 Function-Based Modularity;224
14.1.2.2.2;10.2.2.2 Manufacturing-Based Modularity;225
14.1.3;10.3 Modular Systems Development;227
14.1.3.1;10.3.1 Decomposition Categories;227
14.1.3.1.1;10.3.1.1 Product Decomposition;228
14.1.3.1.2;10.3.1.2 Problem Decomposition;228
14.1.3.1.3;10.3.1.3 Process Decomposition;229
14.1.3.2;10.3.2 Component Grouping into Modules;232
14.1.4;10.4 Modular Product Design;232
14.1.4.1;10.4.1 Needs Analysis;233
14.1.4.2;10.4.2 Product Requirements Analysis;233
14.1.4.3;10.4.3 Product/Concept Analysis;233
14.1.4.4;10.4.4 Product Concept Integration;234
14.1.4.4.1;10.4.4.1 Identify System-Level Specifications;234
14.1.4.4.2;10.4.4.2 Identify the Impact of the System-Level Specifications on the General Functional Requirements;235
14.1.4.4.3;10.4.4.3 Calculate Similarity Index;236
14.1.4.4.4;10.4.4.4 Group Components into Modules;237
14.1.5;10.5 The Benefits of Product Modularity;239
14.2;References;240
15;Chapter 11;241
15.1;Manufacturing Complexity Analysis: A Simulation-Based Methodology;241
15.1.1;11.1 Introduction;241
15.1.2;11.2 Product Variety;242
15.1.3;11.3 Manufacturing Complexity;243
15.1.4;11.4 Mixed-Model Assembly;245
15.1.5;11.5 Impact of Product Variety on Manufacturing Costs;248
15.1.6;11.6 Problem Overview;249
15.1.7;11.7 Simulation-Based Methodology;250
15.1.8;11.8 Experimentations and Results;255
15.1.8.1;11.8.1 Daily Production Sequence with Shift Replenishment;256
15.1.8.2;11.8.2 Monthly Production Sequence with Hourly Replenishment;258
15.1.9;11.9 Conclusion;260
15.1.10;References;260
16;Chapter 12;263
16.1;Designing Cellular Manufacturing for Next Generation Production Systems;263
16.1.1;12.1 Introduction;264
16.1.2;12.2 Literature Review;265
16.1.2.1;12.2.1 Strategy;265
16.1.2.1.1;12.2.1.1 Cell Formation Strategy;265
16.1.2.1.2;12.2.1.2 Cell Formation Techniques;265
16.1.2.2;12.2.2 Elements of Cell Formation;266
16.1.2.2.1;12.2.2.1 Design Objectives;267
16.1.2.2.2;12.2.2.2 Design Constraints;267
16.1.2.2.3;12.2.2.3 Practical Issues;267
16.1.2.2.3.1;Production Issues;267
16.1.2.2.3.2;Flexibility Issues;268
16.1.2.3;12.2.3 Similarity Coefficients;270
16.1.3;12.3 The Proposed Cell Formation Strategy;271
16.1.3.1;12.3.1 Phase 1: Grouping Machines into Machine Cells;272
16.1.3.2;12.3.2 Phase 2: Assigning Parts to Part Families;273
16.1.3.3;12.3.3 Phase 3: Initial Formation of Manufacturing Cells;274
16.1.3.4;12.3.4 Phase 4: Performance Evaluation;275
16.1.3.5;12.3.5 Phase 5: Revise or Improve the Initial Manufacturing Cell Formation;275
16.1.4;12.4 A Numerical Example;276
16.1.4.1;12.4.1 Phase 1: Grouping Machines into Machine Cells;276
16.1.4.2;12.4.2 Phase 2: Grouping Parts into Part Families;281
16.1.4.3;12.4.3 Phase 3: Initial Formation of Manufacturing Cells;283
16.1.4.4;12.4.4 Phase 4: Performance Evaluation;285
16.1.4.5;12.4.5 Phase 5: Revise or Improve the Initial Manufacturing Cell Formation;285
16.1.5;12.5 Results And Discussion;287
16.1.6;12.6 Conclusions;288
17;Index;296




