Liebe Besucherinnen und Besucher,
heute ab 15 Uhr feiern wir unser Sommerfest und sind daher nicht erreichbar. Ab morgen sind wir wieder wie gewohnt für Sie da. Wir bitten um Ihr Verständnis – Ihr Team von Sack Fachmedien
Kamnitsas / Koch / Islam Domain Adaptation and Representation Transfer
1. Auflage 2022
ISBN: 978-3-031-16852-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
4th MICCAI Workshop, DART 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings
E-Book, Englisch, 147 Seiten
Reihe: Lecture Notes in Computer Science
ISBN: 978-3-031-16852-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
DART 2022 accepted 13 papers from the 25 submissions received. The workshop aims at creating a discussion forum to compare, evaluate, and discuss methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical setting by making them robust and consistent across different domains.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Detecting Melanoma Fairly: Skin Tone Detection and Debiasing for Skin Lesion Classification.- Benchmarking Transformers for Medical Image Classification.- Supervised domain adaptation using gradients transfer for improved medical image analysis.- Stain-AgLr: Stain Agnostic Learning for Computational Histopathology using Domain Consistency and Stain Regeneration Loss.- MetaMedSeg: Volumetric Meta-learning for Few-Shot Organ Segmentation.- Unsupervised site adaptation by intra-site variability alignment.- Discriminative, Restorative, and Adversarial Learning: Stepwise Incremental Pretraining.- POPAR: Patch Order Prediction and Appearance Recovery for Self-supervised Medical Image Analysis.- Feather-Light Fourier Domain Adaptation in Magnetic Resonance Imaging.- Seamless Iterative Semi-Supervised Correction of Imperfect Labels in Microscopy Images.- Task-agnostic Continual Hippocampus Segmentation for Smooth Population Shifts.- Adaptive Optimization with Fewer Epochs Improves Across-Scanner Generalization of U-Net based Medical Image Segmentation.- CateNorm: Categorical Normalization for Robust Medical Image Segmentation.