Kammeyer | Introduction to Algebraic Topology | Buch | 978-3-030-98312-3 | sack.de

Buch, Englisch, 182 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 335 g

Reihe: Compact Textbooks in Mathematics

Kammeyer

Introduction to Algebraic Topology


1. Auflage 2022
ISBN: 978-3-030-98312-3
Verlag: Springer International Publishing

Buch, Englisch, 182 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 335 g

Reihe: Compact Textbooks in Mathematics

ISBN: 978-3-030-98312-3
Verlag: Springer International Publishing


This textbook provides a succinct introduction to algebraic topology. It follows a modern categorical approach from the beginning and gives ample motivation throughout so that students will find this an ideal first encounter to the field. Topics are treated in a self-contained manner, making this a convenient resource for instructors searching for a comprehensive overview of the area.
It begins with an outline of category theory, establishing the concepts of functors, natural transformations, adjunction, limits, and colimits. As a first application, van Kampen's theorem is proven in the groupoid version. Following this, an excursion to cofibrations and homotopy pushouts yields an alternative formulation of the theorem that puts the computation of fundamental groups of attaching spaces on firm ground. Simplicial homology is then defined, motivating the Eilenberg-Steenrod axioms, and the simplicial approximation theorem is proven. After verifying the axiomsfor singular homology, various versions of the Mayer-Vietoris sequence are derived and it is shown that homotopy classes of self-maps of spheres are classified by degree.The final chapter discusses cellular homology of CW complexes, culminating in the uniqueness theorem for ordinary homology.
Introduction to Algebraic Topology is suitable for a single-semester graduate course on algebraic topology. It can also be used for self-study, with numerous examples, exercises, and motivating remarks included.
Kammeyer Introduction to Algebraic Topology jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Basic notions of category theory.- Fundamental groupoid and van Kampen's theorem.- Homology: ideas and axioms.- Singular homology.- Homology: computations and applications.- Cellular homology.- Appendix: Quotient topology.


Holger Kammeyer is Assistant Professor of Algebra and Geometry at the University of Düsseldorf. His research interests include algebraic topology as well as arithmetic and profinite groups. A particular field of his expertise is the theory of l²-invariants on which he has authored the textbook Introduction to l²-invariants (Lecture Notes in Mathematics, Volume 2247, Springer).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.