Kamen / Su | Introduction to Optimal Estimation | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 380 Seiten, eBook

Reihe: Advanced Textbooks in Control and Signal Processing

Kamen / Su Introduction to Optimal Estimation


1999
ISBN: 978-1-4471-0417-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 380 Seiten, eBook

Reihe: Advanced Textbooks in Control and Signal Processing

ISBN: 978-1-4471-0417-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



A handy technical introduction to the latest theories and techniques of optimal estimation. It provides readers with extensive coverage of Wiener and Kalman filtering along with a development of least squares estimation, maximum likelihood and maximum a posteriori estimation based on discrete-time measurements. Much emphasis is placed on how they interrelate and fit together to form a systematic development of optimal estimation. Examples and exercises refer to MATLAB software.

Kamen / Su Introduction to Optimal Estimation jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


1 Introduction.- 1.1 Signal Estimation.- 1.2 State Estimation.- 1.3 Least Squares Estimation.- Problems.- 2 Random Signals and Systems with Random Inputs.- 2.1 Random Variables.- 2.2 Random Discrete-Time Signals.- 2.3 Discrete-Time Systems with Random Inputs.- Problems.- 3 Optimal Estimation.- 3.1 Formulating the Problem.- 3.2 Maximum Likelihood and Maximum a posteriori Estimation.- 3.3 Minimum Mean-Square Error Estimation.- 3.4 Linear MMSE Estimation.- 3.5 Comparison of Estimation Methods.- Problems.- 4 The Wiener Filter.- 4.1 Linear Time-Invariant MMSE Filters.- 4.2 The FIR Wiener Filter.- 4.3 The Noncausal Wiener Filter.- 4.4 Toward the Causal Wiener Filter.- 4.5 Derivation of the Causal Wiener Filter.- 4.6 Summary of Wiener Filters.- Problems.- 5 Recursive Estimation and the Kaiman Filter.- 5.1 Estimation with Growing Memory.- 5.2 Estimation of a Constant Signal.- 5.3 The Recursive Estimation Problem.- 5.4 The Signal/Measurement Model.- 5.5 Derivation of the Kaiman Filter.- 5.6 Summary of Kaiman Filter Equations.- 5.7 Kaiman Filter Properties.- 5.8 The Steady-state Kaiman Filter.- 5.9 The SSKF as an Unbiased Estimator.- 5.10 Summary.- Problems.- 6 Further Development of the Kaiman Filter.- 6.1 The Innovations.- 6.2 Derivation of the Kaiman Filter from the Innovations.- 6.3 Time-varying State Model and Nonstationary Noises.- 6.4 Modeling Errors.- 6.5 Multistep Kaiman Prediction.- 6.6 Kaiman Smoothing.- Problems.- 7 Kaiman Filter Applications.- 7.1 Target Tracking.- 7.2 Colored Process Noise.- 7.3 Correlated Noises.- 7.4 Colored Measurement Noise.- 7.5 Target Tracking with Polar Measurements.- 7.6 System Identification.- Problems.- 8 Nonlinear Estimation.- 8.1 The Extended Kalman Filter.- 8.2 An Alternate Measurement Update.- 8.3 Nonlinear System Identification Using Neural Networks.- 8.4 Frequency Demodulation.- 8.5 Target Tracking Using the EKF.- 8.6 Multiple Target Tracking.- Problems.- A The State Representation.- A.1 Discrete-Time Case.- A.2 Construction of State Models.- A.3 Dynamical Properties.- A.4 Discretization of Noise Covariance Matrices.- B The z-transform.- B.1 Region of Convergence.- B.2 z-transform Pairs and Properties.- B.3 The Inverse z-transform.- C Stability of the Kaiman Filter.- C.1 Observability.- C.2 Controllability.- C.3 Types of Stability.- C.4 Positive-Definiteness of P(n).- C.5 An Upper Bound for P(n).- C.6 A Lower Bound for P(n).- C.7 A Useful Control Lemma.- C.8 A Kaiman Filter Stability Theorem.- C.9 Bounds for P(n).- D The Steady-State Kaiman Filter.- D.2 A Stabilizability Lemma.- D.3 Preservation of Ordering.- D.5 Existence and Stability.- E Modeling Errors.- E.1 Inaccurate Initial Conditions.- E.2 Nonlinearities and Neglected States.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.