Kalam / Niazi / Soni | Intelligent Computing Techniques for Smart Energy Systems | E-Book | sack.de
E-Book

E-Book, Englisch, Band 607, 1011 Seiten, eBook

Reihe: Lecture Notes in Electrical Engineering

Kalam / Niazi / Soni Intelligent Computing Techniques for Smart Energy Systems

Proceedings of ICTSES 2018

E-Book, Englisch, Band 607, 1011 Seiten, eBook

Reihe: Lecture Notes in Electrical Engineering

ISBN: 978-981-15-0214-9
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



The book compiles the research works related to smart solutions concept in context to smart energy systems, maintaining electrical grid discipline and resiliency, computational collective intelligence consisted of interaction between smart devices, smart environments and smart interactions, as well as information technology support for such areas. It includes high-quality papers presented in the International Conference on Intelligent Computing Techniques for Smart Energy Systems organized by Manipal University Jaipur. This book will motivate scholars to work in these areas. The book also prophesies their approach to be used for the business and the humanitarian technology development as research proposal to various government organizations for funding approval.
Kalam / Niazi / Soni Intelligent Computing Techniques for Smart Energy Systems jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Preface;6
2;Contents;8
3;About the Editors;18
4;LED Driver Design and Thermal Management;20
4.1;1 Introduction;20
4.1.1;1.1 Experimental Setup;21
4.2;2 Conclusion;26
4.3;References;26
5;Automatic Generation Control of Interconnected Power Systems Using Elephant Herding Optimization;28
5.1;1 Introduction;28
5.2;2 Modelling of Interconnected Three-Area Power System;29
5.3;3 Proposed Elephant Herding Optimization (EHO) Based Strategy for LFC;31
5.3.1;3.1 Clan Updating Operator;31
5.3.2;3.2 Separating Operator;32
5.4;4 Control Strategy;32
5.5;5 Results and Discussions;33
5.6;6 Conclusion;33
5.7;References;36
6;Use of Ti-Doped Hafnia in Photovoltaic Devices: Ab Initio Calculations;38
6.1;1 Introduction;38
6.2;2 FP-LAPW Theory;39
6.3;3 Results and Discussion;40
6.4;4 Conclusions;42
6.5;References;42
7;Electronic and Optical Response of Photovoltaic Semiconductor ZrSxTe2-x;43
7.1;1 Introduction;43
7.2;2 FP-LAPW Method;44
7.3;3 Results and Discussion;44
7.3.1;3.1 Electronic Structure;44
7.4;4 Conclusions;46
7.5;References;47
8;Investigation of Optical Response of Silver Molybdate for Photovoltaic;48
8.1;1 Introduction;48
8.2;2 Methodology;49
8.2.1;2.1 Experiment;49
8.2.2;2.2 Theory;49
8.3;3 Results and Discussion;50
8.3.1;3.1 Electronic Response;50
8.3.2;3.2 Compton Profile;51
8.3.3;3.3 Optical Response;51
8.4;4 Conclusions;53
8.5;References;53
9;Comparative Analysis of Conventional and Meta-heuristic Algorithm Based Control Schemes for Single Link Robotic Manipulator;55
9.1;1 Introduction;55
9.2;2 Control of a Single Link Manipulator;56
9.3;3 Conventional Control Techniques;58
9.3.1;3.1 PID Control;58
9.3.2;3.2 FOPID Control;58
9.3.3;3.3 Tuning of Controller Using GA;58
9.4;4 Results;59
9.5;5 Conclusion;61
9.6;References;61
10;Synthesis of Antenna Array Pattern Using Ant Lion Optimization Algorithm for Wide Null Placement and Low Dynamic Range Ratio;63
10.1;1 Introduction;63
10.2;2 Problem Formulation;64
10.2.1;2.1 Wide Null Placement with Reduced SLL;65
10.2.2;2.2 Dynamic Range Ratio (DRR) Constraint-Based Peak Side Lobe Level (PSLL) Minimization;66
10.3;3 Results and Discussion;67
10.3.1;3.1 Wide Null Placement with Reduced SLL;67
10.3.2;3.2 Dynamic Range Ratio (DRR) Constraint-Based Peak Side Lobe Level (PSLL) Minimization;69
10.4;4 Conclusion;71
10.5;References;72
11;Design and Analysis of a Hybrid Non-volatile SRAM Cell for Energy Autonomous IoT;73
11.1;1 Introduction;74
11.2;2 Background;75
11.3;3 Proposed NV-SRAM Cell;76
11.3.1;3.1 Cell Design Concept;76
11.4;4 Results;79
11.5;5 Conclusion;80
11.6;References;80
12;Bandgap Engineering of AgGaS2 for Optoelectronic Devices: First-Principles Computational Technique;82
12.1;1 Introduction;82
12.2;2 Computational Details;83
12.3;3 Structural Information;84
12.4;4 Results and Discussion;85
12.4.1;4.1 Electronic Properties;85
12.4.2;4.2 Optical Properties;87
12.5;5 Conclusion;88
12.6;References;88
13;Intelligent Power Sharing Control for Hybrid System;90
13.1;1 Introduction;90
13.2;2 System Description and Modeling;91
13.3;3 Control Strategy;92
13.4;4 Proposed Intelligent Control;93
13.5;5 Results and Discussion;95
13.5.1;5.1 Steady-State Response;95
13.5.2;5.2 Dynamic Response;96
13.6;6 Conclusion;98
13.7;References;99
14;Comparative Analysis of Various Classifiers for Gesture Recognition;100
14.1;1 Introduction;101
14.2;2 Related Work;101
14.2.1;2.1 Detection of Target;102
14.2.2;2.2 Recognition of Target;102
14.3;3 Proposed Work;103
14.4;4 Result;104
14.5;5 Conclusion and Future Development;107
14.6;References;108
15;Artificial Intelligence Based Optimization Techniques: A Review;110
15.1;1 Introduction;110
15.2;2 Genetic Algorithm;111
15.3;3 Particle Swarm Optimization;112
15.4;4 Ant Colony Optimization (ACO);113
15.5;5 BAT Algorithm;114
15.5.1;5.1 Random Fly;114
15.5.2;5.2 Local Random Walk;115
15.6;6 Elephant Herding Optimization;115
15.6.1;6.1 Clan Updating Operator;115
15.6.2;6.2 Separating Operator;116
15.7;7 Conclusion;117
15.8;References;117
16;Optimal Location and Sizing of Microgrid for Radial Distribution Systems;119
16.1;1 Introduction;120
16.2;2 Problem Formulation;121
16.2.1;2.1 Objective Function;121
16.2.2;2.2 Constraints;121
16.3;3 Methodology;122
16.3.1;3.1 Proposed Algorithm;122
16.4;4 Case Study;123
16.5;5 Conclusion;126
16.6;References;126
17;Constraint Tariff Model to Reduce the Amount of Cross Subsidy Incorporated in Electricity Tariff Using Iterative Optimization Technique;128
17.1;1 Introduction;128
17.2;2 Basic Model and Recommended Modifications;129
17.3;3 Optimization Problem Formulation;130
17.3.1;3.1 The Objective Function;130
17.3.2;3.2 The Operating Constraints;130
17.3.3;3.3 The Bounds;131
17.4;4 Algorithm Developed;131
17.5;5 Availability of Data and Assumptions;133
17.6;6 Results and Discussion;134
17.7;7 Conclusion;135
17.8;References;136
18;Titration Machine: A New Approach Using Arduino;137
18.1;1 Introduction;137
18.2;2 Motivation;138
18.3;3 Experimental Setup;138
18.4;4 Working and Flowchart;139
18.5;5 Circuit Diagram of Arduino with Motor Shield;139
18.6;6 A Glimpse of the Titration Machine;140
18.7;7 Results;142
18.8;8 Conclusions;143
18.9;References;143
19;Hybrid Method for Cluster Analysis of Big Data;144
19.1;1 Introduction;144
19.2;2 Related Work;145
19.3;3 Proposed Work;146
19.3.1;3.1 The Proposed Model;146
19.3.2;3.2 Workflow of the Algorithm;146
19.4;4 Results and Discussion;147
19.5;5 Conclusions;149
19.6;References;150
20;A New Radio Frequency Harvesting System;151
20.1;1 Introduction;151
20.2;2 Overview of the System;152
20.2.1;2.1 Rectenna;153
20.2.2;2.2 Power Converter;153
20.2.3;2.3 Flyback Converter;154
20.3;3 Methodology;155
20.3.1;3.1 Conceptual Frame Work and Simulations;156
20.4;4 Results;160
20.5;5 Conclusion;161
20.6;References;162
21;Backpropagation Algorithm-Based Approach to Mitigate Soiling from PV Module;163
21.1;1 Introduction;164
21.2;2 Factors Influencing Dust Settlement;164
21.3;3 Training and Modeling of ANN;166
21.4;4 Results and Discussion;168
21.5;5 Conclusion;170
21.6;References;171
22;Real-Time Low-Frequency Oscillations Monitoring and Coherency Determination in a Wind-Integrated Power System;172
22.1;1 Introduction;172
22.2;2 Problem Formulation;174
22.2.1;2.1 Damping Index (DI);174
22.2.2;2.2 Coherent Groups Determination;175
22.3;3 Proposed Methodology;175
22.3.1;3.1 Optimal PMU Placement;175
22.3.2;3.2 Wind Site Selection;175
22.3.3;3.3 Proposed PMU-ANN Based Method;176
22.4;4 Results;177
22.4.1;4.1 Optimal PMU Placement;178
22.4.2;4.2 Proposed Real-Time Monitoring;178
22.5;5 Conclusion;180
22.6;References;180
23;Design and Performance Analysis of Different Structures of MEMS PVDF-Based Low-Frequency Piezoelectric Energy Harvester;182
23.1;1 Introduction;183
23.2;2 Mathematical Modeling;184
23.3;3 Design Parameters of Cantilever Beam;185
23.3.1;3.1 Design Parameters for the Straight T-Shaped Cantilever Structure;186
23.3.2;3.2 Designing Parameters of the Pi-Shaped Cantilever Structure;186
23.4;4 Results and Discussion;187
23.4.1;4.1 Modal Analysis;187
23.4.2;4.2 Dynamic Analysis;189
23.4.3;4.3 Piezoelectric Analysis;189
23.4.4;4.4 Stress Analysis;189
23.5;5 Conclusion;189
23.6;References;190
24;Designing and Implementation of Overhead Conductor Altitude Measurement System Using GPS for Sag Monitoring;192
24.1;1 Introduction;193
24.2;2 Designing of Overhead Conductor Altitude Measurement System;194
24.2.1;2.1 Field Test;195
24.3;3 Accuracy Enhancement Techniques;197
24.4;4 Results;198
24.4.1;4.1 Error Analysis;200
24.5;5 Sag Estimation;201
24.6;6 Conclusion;201
24.7;References;202
25;Risk-Averse G2V Scheduling of Electric Vehicle Aggregator for Improved Market Operations;204
25.1;1 Introduction;204
25.2;2 Risk Controlling in Stochastic Optimization;206
25.3;3 Scenario Generation and Reduction;206
25.4;4 Risk-Aversive Formulation of Stochastic Programming Problem;207
25.5;5 Simulation Results of Risk-Constrained Stochastic Scheduling;209
25.6;6 Conclusion;211
25.7;References;211
26;Optical Gain Tuning in Type-I Al0.45Ga0.55As/GaAs0.84P0.16/Al0.45Ga0.55As Nano-heterostructure;213
26.1;1 Introduction;214
26.2;2 Theoretical Background;214
26.3;3 Simulation Results;215
26.4;4 Conclusions;217
26.5;References;218
27;Semantic Similarity Computation Among Hindi Words Using Hindi Lexical Ontology;219
27.1;1 Introduction;219
27.2;2 Theoretical Background of Hindi Ontology;220
27.2.1;2.1 The Structure for Indo WordNet;221
27.3;3 Proposed Semantic Similarity Method;221
27.4;4 Experiments and Analysis;222
27.5;5 Conclusion;225
27.6;References;226
28;A Dual-Band Microstrip Patch Antenna for Wireless Applications;227
28.1;1 Introduction;227
28.2;2 Antenna Geometry;228
28.3;3 Results and Discussion;229
28.4;4 Conclusion;230
28.5;References;233
29;Analysis of Energy Consumption and Implementation of R-Statistical Programming for Load Forecasting in Presence of Solar Generation;234
29.1;1 Introduction;234
29.2;2 Details of the Installed System;235
29.3;3 Advanced Metering Infrastructure (AMI) Architecture;235
29.3.1;3.1 Smart Energy Meters;236
29.3.2;3.2 Communication Network;236
29.3.3;3.3 Smart Grid Control Center;236
29.4;4 Advanced Data Analysis Using Smart Meter Data;236
29.4.1;4.1 Signature of Monthly Energy Consumption of the House;237
29.4.2;4.2 Signature of Daily Energy Consumption of the House;237
29.5;5 Impact of Renewable Integration;238
29.5.1;5.1 Grid-Connected Solar PV System Without Battery Backup;239
29.5.2;5.2 Grid-Connected Solar PV System with Battery Backup for Partial Load;240
29.5.3;5.3 Comparison of Monthly Consumption Pattern;240
29.6;6 Forecasting of Consumer Energy Consumption;241
29.6.1;6.1 ARIMA Forecasting Model;241
29.6.2;6.2 Simple Exponential Smoothing Forecasting Model;242
29.7;7 Results;243
29.8;8 Conclusion;244
29.9;References;245
30;A Comprehensive Analysis of Delta and Adaptive Delta Modulated Modular Multilevel Converter;246
30.1;1 Introduction;246
30.2;2 Delta Modulation;248
30.3;3 Adaptive Delta Modulation;248
30.4;4 Results and Discussion;248
30.5;5 Conclusion;252
30.6;References;253
31;Speed Control of PMSM Drive Using Jaya Optimization Based Model Reduction;254
31.1;1 Introduction;254
31.2;2 Mathematical Modeling of PMSM Drive and Control;255
31.2.1;2.1 PMSM Drive;256
31.3;3 Order Reduction and Controller Design for PMSM;257
31.3.1;3.1 Jaya Optimization Algorithm [21, 22];257
31.3.2;3.2 Current Control Loop;257
31.3.3;3.3 Speed Control Loop;259
31.3.4;3.4 Tuning of PI Controller Using Optimization Algorithm;260
31.4;4 Conclusion;262
31.5;References;262
32;Jaya Optimization-Based PID Controller for Z-Source Inverter Using Model Reduction;264
32.1;1 Introduction;264
32.2;2 Z-Source Inverter;266
32.3;3 Jaya Optimization Algorithm;268
32.4;4 Simulation and Results;271
32.5;5 Conclusion;273
32.6;References;273
33;Stability Analysis of an Offshore Wind and Marine Current Farm in Grid Connected Mode Using SMES;275
33.1;1 Introduction;275
33.2;2 Configuration of the Studied Systems;276
33.2.1;2.1 Modeling of OWF;276
33.2.2;2.2 DFIG Modeling;277
33.2.3;2.3 Marine Current Turbine;278
33.2.4;2.4 SCIG Modeling;279
33.3;3 SMES Modeling;279
33.4;4 H-Infinity Controller of SMES;280
33.5;5 Simulation Results and Discussion;282
33.6;6 Conclusion;283
33.7;References;284
34;Modeling and Simulation of Proton Exchange Membrane Fuel Cell Hybrid Electric Vehicle;286
34.1;1 Introduction;286
34.2;2 Architecture of Fuel Cell Hybrid Electric Vehicle;288
34.2.1;2.1 Fuel Cell;288
34.2.2;2.2 Unidirectional DC–DC Converter;288
34.2.3;2.3 Bidirectional DC–DC Converter;289
34.2.4;2.4 Energy Storage System (ESS);289
34.3;3 Simulation Results and Discussion;290
34.3.1;3.1 Case Study 1 (Cold Start Mode);290
34.3.2;3.2 Case Study-2 (Normal Operating Mode);290
34.3.3;3.3 Case Study 3 (Acceleration Mode);291
34.3.4;3.4 Case Study 4 (Deceleration Mode);292
34.4;4 Conclusion;293
34.5;References;294
35;Optimum Performance of Carbon Nanotube Field-Effect Transistor Based Sense Amplifier D Flip-Flop Circuits;297
35.1;1 Introduction;297
35.2;2 Theoretical Analysis and Design Consideration of Existing D Flip-Flop Topologies (CNFET);298
35.3;3 Carbon Nanotube Field-Effect Transistor (CNFET);300
35.3.1;3.1 Diameter of CNFET (DCNT);300
35.3.2;3.2 Threshold Voltage (Vth);301
35.3.3;3.3 Width of CNTFET;301
35.3.4;3.4 On Off Current Ratio;301
35.3.5;3.5 Transconductance (gm);302
35.4;4 Simulated Results of Various High-Performance D Flip-Flop Designs;302
35.5;5 Conclusion;304
35.6;References;304
36;Flower Pollination Based Solar PV Parameter Extraction for Double Diode Model;306
36.1;1 Introduction;307
36.2;2 Modeling of Solar PV;308
36.3;3 Problem Formulation;309
36.4;4 Flower Pollination Algorithm;310
36.5;5 Simulation Results and Discussions;312
36.6;6 Conclusion;314
36.7;References;314
37;Cost–Benefit Calculation Using AB2X4 (A = Zn, Cd; B = Ga; X = Te): A Promising Material for Solar Cells;316
37.1;1 Introduction;316
37.2;2 Theoretical Methodology;317
37.3;3 Result Discussion;317
37.3.1;3.1 Method Overview;318
37.3.2;3.2 PV Module Cost Calculation;318
37.4;4 Conclusion;320
37.5;References;320
38;Detection and Analysis of Power System Faults in the Presence of Wind Power Generation Using Stockwell Transform Based Median;321
38.1;1 Introduction;322
38.2;2 Test System Used for the Proposed Study;323
38.3;3 Proposed Methodology;324
38.3.1;3.1 Proposed Fault Index;324
38.3.2;3.2 Stockwell Transform;324
38.4;4 S-Transform Based Simulation Results with Discussion;325
38.4.1;4.1 Line to Ground Fault;325
38.4.2;4.2 Double Line Fault;326
38.4.3;4.3 Double Line to Ground Fault;327
38.4.4;4.4 Three-Phase Fault Involving Ground;328
38.4.5;4.5 Comparative Study;329
38.5;5 Conclusion;330
38.6;References;330
39;A Directional Relaying Scheme for Microgrid Protection;332
39.1;1 Introduction;332
39.2;2 Test Microgrid;334
39.3;3 Directional Relaying Algorithm;334
39.3.1;3.1 Detectors for the Directional Approach;334
39.3.2;3.2 Proposed Technique;336
39.4;4 Simulation Results;336
39.4.1;4.1 Faults During Grid-Connected Mode;337
39.4.2;4.2 Results for Fault During Islanded Mode;338
39.4.3;4.3 Results for Load Switching;338
39.4.4;4.4 Results for High-Impedance Fault (HIF) in Islanding Mode;339
39.5;5 Conclusion;340
39.6;References;340
40;Wavefunctions and Optical Gain in In0.24Ga0.76N/GaN Type-I Nano-heterostructure Under External Uniaxial Strain;342
40.1;1 Introduction;342
40.2;2 Device Structure and Modeling;343
40.3;3 Results and Discussion;345
40.4;4 Conclusions;349
40.5;References;349
41;Cost–Benefit Analysis in Distribution System of Jaipur City After DG and Capacitor Allocation;351
41.1;1 Introduction;351
41.2;2 Problem Formulation;352
41.3;3 Proposed Technique;353
41.4;4 Results;354
41.4.1;4.1 69 Bus Test System;354
41.4.2;4.2 130 Bus (Jaipur City) System;356
41.5;5 Conclusion;357
41.6;References;358
42;Comparative Simulation Study of Dual-Axis Solar Tracking System on Simulink Platform;359
42.1;1 Introduction;359
42.2;2 Developed Solar Tracking System;360
42.3;3 Characteristics of PV Cell;361
42.3.1;3.1 Simulink Block Diagram;362
42.4;4 Simulation Results and Discussion;364
42.4.1;4.1 Elevated Tracking Results;364
42.4.2;4.2 Azimuthal Tracking Results;364
42.5;5 Conclusion;365
42.6;References;365
43;Performance Evaluation and Quality Analysis of Line and Node Based Voltage Stability Indices for the Determination of the Voltage Instability Point;366
43.1;1 Introduction;366
43.2;2 Existing Line and Node Based Voltage Stability Indices;367
43.2.1;2.1 Maximum Loadability Index (MLI);367
43.2.2;2.2 Loadability Index (Lp);368
43.2.3;2.3 Line Loadability Index (Ls);368
43.2.4;2.4 Line Stability Index (Lmn);368
43.2.5;2.5 Line Stability Factor (LQP);369
43.2.6;2.6 Fast Voltage Stability Index (FVSI);369
43.2.7;2.7 Line Collapse Proximity Index (LCPI);369
43.2.8;2.8 L-Index;369
43.3;3 Illustrative Example;370
43.3.1;3.1 With One Fictitious Bus in the Middle of the Transmission Line;371
43.3.2;3.2 With One Fictitious Bus at (3/4)th Length of the Transmission Line;373
43.4;4 Conclusion;374
43.5;References;374
44;Channel Estimation in Massive MIMO with Spatial Channel Correlation Matrix;376
44.1;1 Introduction;376
44.2;2 System Model for Uplink Pilot Transmission;377
44.3;3 MMSE Channel Estimation;378
44.4;4 Spatial Channel Correlation and Pilot Contamination;379
44.4.1;4.1 Impact of Spatial Correlation on Channel Estimation;380
44.4.2;4.2 Impact of Pilot Contamination on Channel Estimation;380
44.5;5 EW-MMSE and LS Estimation Schemes;380
44.5.1;5.1 Element-Wise MMSE Channel Estimator;380
44.5.2;5.2 Least-Square Channel Estimator;381
44.6;6 Simulation Results;381
44.7;7 Conclusion;382
44.8;References;383
45;A New Array Reconfiguration Scheme for Solar PV Systems Under Partial Shading Conditions;385
45.1;1 Introduction;385
45.2;2 System Description;387
45.2.1;2.1 Modeling of a Total Cross Tied TCT Connection;387
45.3;3 Methodology;388
45.4;4 Simulation Results and Discussion;389
45.4.1;4.1 Pattern 1—Short Wide;389
45.4.2;4.2 Pattern 2—Long Wide;392
45.5;5 Conclusion;393
45.6;References;394
46;Adaptability Analysis of Particle Swarm Optimization Variants in Maximum Power Tracking for Solar PV Systems;395
46.1;1 Introduction;395
46.2;2 System Description;396
46.3;3 Modelling of PV Cell;396
46.3.1;3.1 Characteristics of PV Module;398
46.3.2;3.2 Characteristics of PV Array Under Partial Shading Conditions;399
46.4;4 Particle Swarm Optimization: Outline of PSO;399
46.4.1;4.1 Neighbourhood Selection Scheme;401
46.5;5 Simulation and Results Discussion;402
46.6;6 Conclusion;403
46.7;References;407
47;Fault Location Methods in HVDC Transmission System—A Review;408
47.1;1 Introduction;408
47.2;2 Literature Review on Fault Location Techniques;412
47.3;3 Conclusion;415
47.4;References;415
48;Optimal Reactive Power Dispatch Through Minimization of Real Power Loss and Voltage Deviation;417
48.1;1 Introduction;419
48.2;2 Problem Formulation;420
48.2.1;2.1 Objective Function;420
48.2.2;2.2 System Constraints;420
48.2.3;2.3 General Formulation of the Objective Function;421
48.3;3 Solution Methodology;421
48.4;4 Simulation Result;422
48.5;5 Conclusion;425
48.6;References;425
49;IoT Enabled Intelligent Energy Management and Optimization Scheme with Controlling and Monitoring Approach in Modern Classroom Applications;427
49.1;1 Introduction;428
49.2;2 Related Works;428
49.3;3 Contextual Analysis/Background Survey;429
49.4;4 Energy Management in Campus: Challenges;430
49.5;5 Existing System;431
49.6;6 Methodology;431
49.6.1;6.1 Design Criteria;431
49.6.2;6.2 Device Configuration and Working Principles;431
49.7;7 Testing and Evaluation of Project Implementation;432
49.8;8 Future Scope and Conclusion;435
49.9;References;435
50;High Power Density Parallel LC-Link PV Inverter for Stand-alone and Grid Mode of Operation;437
50.1;1 Introduction;438
50.2;2 Operation Principle Under Different Modes;439
50.2.1;2.1 Configuration;439
50.2.2;2.2 Principle of Operation;440
50.3;3 Parameter Design Procedure;441
50.4;4 Zero Voltage Switching Operation (ZVS);444
50.5;5 Simulation Results;445
50.6;6 Conclusions;448
50.7;References;449
51;A Hybrid Forecasting Model Based on Artificial Neural Network and Teaching Learning Based Optimization Algorithm for Day-Ahead Wind Speed Prediction;450
51.1;1 Introduction;450
51.2;2 Working Principle of Hybrid Forecasting Model;451
51.3;3 Forecasting Results and Discussions;453
51.4;4 Conclusion;458
51.5;References;458
52;Risk Averse Energy Management for Grid Connected Microgrid Using Information Gap Decision Theory;459
52.1;1 Introduction;460
52.2;2 Information Gap Decision Theory;461
52.3;3 Problem Formulation;462
52.3.1;3.1 Deterministic MG Energy Management;462
52.3.2;3.2 IGDT Based MG Energy Management;462
52.4;4 Numerical Simulation;463
52.5;5 Conclusions;466
52.6;References;466
53;Power Quality Improvement of Microgrid Using Double Bridge Shunt Active Power Filter (DBSAPF);468
53.1;1 Introduction;468
53.2;2 Shunt Active Power Filter;469
53.3;3 Hysteresis Control Technique;470
53.4;4 Proposed Double Bridge SAPF;471
53.5;5 Simulation Results;472
53.5.1;5.1 Case Study 1;473
53.5.2;5.2 Case Study 2;474
53.6;6 Conclusion;475
53.7;References;476
54;Opposition Theory Enabled Intelligent Whale Optimization Algorithm;477
54.1;1 Introduction;477
54.2;2 Whale Optimization Algorithm;479
54.2.1;2.1 Girdling Prey;479
54.2.2;2.2 Bubble-Net Attacking Method (Exploitation Phase);480
54.2.3;2.3 Prey Search (Exploration Phase);480
54.3;3 Opposition Theory Enabled Intelligent Whale Optimization Algorithm;481
54.3.1;3.1 Implementation of OBL on OIWOA;481
54.3.2;3.2 Implementation of Sinusoidal Function;482
54.3.3;3.3 Implementation of Crossover;482
54.4;4 Results and Discussions;482
54.5;5 Conclusions;484
54.6;References;484
55;Adaptive Inertia-Weighted Firefly Algorithm;486
55.1;1 Introduction;486
55.2;2 Firefly Algorithm;488
55.3;3 Improved Firefly Algorithm;489
55.4;4 Simulation Results and Discussions;491
55.4.1;4.1 Results on Uni-modal Functions;491
55.4.2;4.2 Results on Multi-modal and Fixed Dimension Multi-modal Functions;492
55.5;5 Conclusions;492
55.6;References;493
56;A Review of Scheduling Techniques and Communication Protocols for Smart Homes Capable of Implementing Demand Response;495
56.1;1 Introduction;495
56.2;2 Scheduling Techniques;496
56.2.1;2.1 Rule-Based Scheduling Techniques;496
56.2.2;2.2 Training-Based Artificial Intelligent Techniques;497
56.2.3;2.3 Heuristic and Meta-Heuristic AI Techniques;497
56.3;3 Communication;498
56.3.1;3.1 Wired Communication Protocols;498
56.3.2;3.2 Wireless-Based Communication;499
56.3.3;3.3 Hybrid and Integrated Protocols;499
56.4;4 Conclusion;500
56.5;References;500
57;A Robust Open-Loop Frequency Estimation Method for Single-Phase Systems;504
57.1;1 Introduction;504
57.2;2 Even Harmonics Generation;505
57.3;3 Filtering Requirements;506
57.3.1;3.1 DC-Offset Rejection;506
57.3.2;3.2 Extraction of Fundamental Orthogonal Components;507
57.3.3;3.3 Elimination of Higher Order Harmonics;508
57.4;4 Frequency Estimation;509
57.4.1;4.1 Simulation Setup and Results;509
57.5;5 Conclusion;512
57.6;References;512
58;Demand-Side Load Management for Peak Shaving;514
58.1;1 Introduction;514
58.2;2 Demand-Side Load Management;515
58.3;3 Modeling and Simulation;517
58.3.1;3.1 Modeling;517
58.3.2;3.2 Simulation Process;518
58.4;4 Simulation Results;520
58.5;5 Conclusions;523
58.6;References;523
59;A New Line Voltage Stability Index (NLVSI) For Voltage Stability Assessment;524
59.1;1 Introduction;524
59.2;2 Existing Line Based Voltage Stability Indices;526
59.2.1;2.1 Line Stability Index (Lmn);526
59.2.2;2.2 Fast Voltage Stability Index (FVSI);526
59.2.3;2.3 Line Stability Factor (LQP);526
59.2.4;2.4 Line Voltage Reactive Power Index (VQIline);527
59.2.5;2.5 New Voltage Stability Index (NVSI);527
59.3;3 Effect of Delta on Voltage;527
59.4;4 Proposed Index Formulation;529
59.5;5 Representation of ZIP Load Model;531
59.6;6 Test Case Results;531
59.6.1;6.1 When Conventional (i.e. Constant Power) Load is Used;532
59.6.2;6.2 When ZIP Load Model is Used;534
59.6.3;6.3 Results Comparison Between Conventional Load and ZIP Load Model;534
59.7;7 Conclusion;536
59.8;References;537
60;A Comprehensive Comparative Economic Analysis of ACO and CS Technique for Optimal Operation of Stand-alone HES;538
60.1;1 Introduction;540
60.2;2 Mathematical Formulation;541
60.2.1;2.1 Modeling of System Components;542
60.2.2;2.2 Operation Strategy;545
60.2.3;2.3 Objective Function;546
60.2.4;2.4 Constraints;546
60.3;3 Ant Colony Optimization;547
60.4;4 Cuckoo Search Technique;548
60.4.1;4.1 Levy Flights Technique;548
60.4.2;4.2 Random Walk Technique;549
60.5;5 Comparative Analysis;549
60.6;6 Conclusion;552
60.7;References;553
61;Demand Response in Distribution Systems: A Comprehensive Review;554
61.1;1 Introduction;554
61.2;2 Background and Classification of DRPs;555
61.3;3 An Overview of DR;557
61.4;4 Conclusion;560
61.5;References;560
62;Stochastic Operational Management of Grid-Connected Microgrid Under Uncertainty of Renewable Resources and Load Demand;562
62.1;1 Introduction;562
62.2;2 Stochastic Modeling of Renewable Generation and System Load;563
62.2.1;2.1 Stochastic Modeling of Wind Power Generation;563
62.2.2;2.2 Stochastic Modeling of PV Power Generation;564
62.2.3;2.3 Stochastic Modeling of System Load Demand;565
62.2.4;2.4 Combined Stochastic Modeling of the System;565
62.2.5;2.5 Tournament Selection Based Scenarios Sampling;565
62.3;3 Problem Formulation;565
62.3.1;3.1 Objective Function;565
62.3.2;3.2 Constraints;566
62.4;4 Solution Methodology;567
62.5;5 Simulation Results and Discussion;567
62.6;6 Conclusion;569
62.7;References;570
63;Real-Time High-Speed Novel Data Acquisition System Based on ZYNQ;571
63.1;1 Introduction;572
63.2;2 Overview of the Hardware Platform and Contemporary Solutions;572
63.3;3 Firmware Design of Data Acquisition System;573
63.4;4 Software Interface for Data Acquisition System;574
63.5;5 Results and Discussion;576
63.6;6 Conclusion;577
63.7;References;578
64;Exergetic Analysis of Glazed Photovoltaic Thermal (Single-Channel) Module Using Whale Optimization Algorithm and Genetic Algorithm;579
64.1;1 Introduction;580
64.2;2 System Description;582
64.3;3 Tool Used for Optimization;582
64.4;4 Result and Discussion;583
64.5;5 Conclusion;587
64.6;Appendix: Optimized Value of Parameters;587
64.7;References;588
65;An 8-Bit Charge Redistribution SAR ADC;589
65.1;1 Introduction;589
65.2;2 8-Bit SAR ADC Architecture;591
65.3;3 Implementation of Inner Blocks;593
65.3.1;3.1 S/H Circuit;593
65.3.2;3.2 Comparator;594
65.4;4 Simulation Results;595
65.5;5 Conclusion;597
65.6;References;597
66;Analysis of Triple-Threshold Technique for Power Optimization in SRAM Bit-Cell for Low-Power Applications at 45 Nm CMOS Technology;598
66.1;1 Introduction;598
66.2;2 Approach;600
66.3;3 Analysis and Result;600
66.3.1;3.1 Data Stability;600
66.3.2;3.2 Read Noise Margin;600
66.3.3;3.3 Write Noise Margin;601
66.3.4;3.4 Average Power and Leakage Power;602
66.4;4 Conclusion;604
66.5;References;604
67;Low Power Adder Circuits Using Various Leakage Reduction Techniques;606
67.1;1 Introduction;606
67.2;2 Literature Review;607
67.2.1;2.1 Sleep Transistor Technique;607
67.2.2;2.2 Stack Transistor Technique;608
67.2.3;2.3 Super Cutoff (SCCMOS) Technique;609
67.3;3 Implementation of Adder Circuit;610
67.3.1;3.1 1-Bit Full Adder;610
67.3.2;3.2 4-Bit Ripple Carry Adder;612
67.4;4 Simulation and Analysis;612
67.5;5 Conclusion;614
67.6;References;615
68;A Nature-Inspired Metaheuristic Swarm Based Optimization Technique BFOA Based Optimal Controller for Damping of SSR;617
68.1;1 Introduction;617
68.2;2 System Configuration;618
68.3;3 Development of Overall System Model;619
68.4;4 Application of Optimal Control Theory;619
68.5;5 Optimal Parameter Selection Using BFOA;619
68.5.1;5.1 A Brief Overview of BFOA;619
68.6;6 Results and Discussions;620
68.6.1;6.1 Case Study with 60% Series Compensation;620
68.7;7 Conclusion;622
68.8;References;624
69;New Fuzzy Divergence Measures, Series, Its Bounds and Applications in Strategic Decision-Making;626
69.1;1 Introduction;626
69.2;2 New Information Divergence Measures;627
69.3;3 Series of Fuzzy Divergence Measures;628
69.4;4 Some New Other Fuzzy Information Divergence Measures;632
69.5;5 New Information Divergence and Their Relation with Other Well-Known Divergence Measures;633
69.6;6 Application of Proposed Series of Fuzzy Divergence Making in Strategic Decision-Making;635
69.7;7 Conclusion;638
69.8;References;638
70;Mutual Coupling Reduction of Biconvex Lens Shaped Patch Antenna for 5G Application;639
70.1;1 Introduction;639
70.2;2 Design of the Proposed Antenna;640
70.2.1;2.1 Rotman Lens Equations and Proposed Modification;640
70.2.2;2.2 Design of the Perturbed Strip;641
70.3;3 Design and Simulation of Proposed Antenna;641
70.3.1;3.1 Substrate Material and Height;641
70.3.2;3.2 Design of the Proposed Antenna;642
70.3.3;3.3 Results from Simulation of the Proposed Antenna;642
70.4;4 Conclusion;644
70.5;References;646
71;Analysis of Anti-Islanding Protection Methods Integrated in Distributed Generation;647
71.1;1 Introduction;647
71.2;2 Passive Methods;648
71.3;3 Active Methods;650
71.4;4 Simulation Results;652
71.5;5 Conclusion;654
71.6;References;654
72;Color Image Watermarking with Watermark Hashing;656
72.1;1 Introduction;656
72.2;2 Background;657
72.2.1;2.1 Singular Value Decomposition (SVD);657
72.2.2;2.2 Discrete Wavelet Transform (DWT);658
72.3;3 Hashing Techniques;658
72.4;4 Experiments and Results;659
72.5;5 Conclusions;662
72.6;References;663
73;Global Neighbourhood Algorithm Based Event-Triggered Automatic Generation Control;665
73.1;1 Introduction;665
73.2;2 AGC System Modelling;667
73.3;3 Problem Formulation;668
73.3.1;3.1 Objective Function;668
73.3.2;3.2 Global Neighbourhood Algorithm (GNA);668
73.3.3;3.3 Delay/Sampling Time Dependent Stability;668
73.4;4 Case Study;670
73.4.1;4.1 Case I;670
73.4.2;4.2 Case II;672
73.5;5 Conclusions;673
73.6;References;673
74;A Review on Voltage and Frequency Control of Micro Hydro System;675
74.1;1 Introduction;675
74.2;2 Voltage and Frequency Regulation in Micro Hydro System;677
74.3;3 Classification of ELC on the Basis of Loading;679
74.4;4 Discussion;681
74.5;5 Conclusion;682
74.6;References;682
75;Performance Analysis of Solar and Plug-in Electric Vehicle's Integration to the Power System with Automatic Generation Control;684
75.1;1 Introduction;684
75.2;2 Proposed System Study;685
75.3;3 Selection of Controller and Objective Function;686
75.4;4 Jaya Optimization Technique;687
75.5;5 Result and Analysis;688
75.6;6 Conclusion;691
75.7;7 Appendix;691
75.8;References;691
76;A Bibliographical View on Research and Developments of Photovoltaic and Thermal Technologies as a Combined System: PV/T System;693
76.1;1 Introduction;694
76.2;2 PV/T Air Collector;695
76.2.1;2.1 Effect of Glazing;696
76.2.2;2.2 Effect of Adding Thin Metallic Sheets (TMS) and Fins;696
76.2.3;2.3 Effect of Packing Factor;697
76.3;3 PV/T Water;697
76.4;4 PV/T Combi;698
76.5;5 Modelling of PV/T Collector;699
76.6;6 Optimization Using Soft Computing;700
76.7;7 Conclusion;701
76.8;References;701
77;UPM-NoC: Learning Based Framework to Predict Performance Parameters of Mesh Architecture in On-Chip Networks;703
77.1;1 Introduction;704
77.2;2 Related Work;705
77.2.1;2.1 Learning Models Used in Different Aspects of NoC;705
77.3;3 Design Strategy;706
77.3.1;3.1 Detailed Layout of Unified Performance Model;706
77.3.2;3.2 Data Collection Using Booksim Simulator;707
77.3.3;3.3 Generation of Dataset;708
77.4;4 Results and Discussion;708
77.4.1;4.1 Experimental Results;708
77.4.2;4.2 Validation;710
77.4.3;4.3 Runtime Comparison;711
77.5;5 Conclusion;712
77.6;References;712
78;Comparison of Performance Analysis of Optimal Controllers for Frequency Regulation of Three-Area Power System;714
78.1;1 Introduction;714
78.2;2 Three-Area System Under Study;716
78.3;3 Optimization of Controller Gains;717
78.4;4 Results and Discussion;718
78.5;5 Conclusion;721
78.6;References;721
79;Optimal DG Allocation in a Microgrid Using Droop-Controlled Load Flow;723
79.1;1 Introduction;723
79.2;2 Problem Formulation;725
79.3;3 Methodology;726
79.3.1;3.1 Droop-Controlled Load Flow (DCLF);726
79.3.2;3.2 Non-Dominated Sorted Genetic Algorithm;727
79.3.3;3.3 Fuzzy Satisfying Method;727
79.4;4 Results and Discussions;727
79.5;5 Conclusion;728
79.6;References;729
80;A Comparative Study of Classification Algorithms for Predicting Liver Disorders;731
80.1;1 Introduction;731
80.2;2 Literature Review;732
80.3;3 Methodology;734
80.3.1;3.1 Data Collection;734
80.3.2;3.2 Data Preprocessing;734
80.3.3;3.3 Applying Different Classification Algorithms;734
80.3.4;3.4 Predicting the Test Set Results;735
80.3.5;3.5 Comparison of Models;735
80.4;4 Results and Discussion;735
80.5;5 Conclusion and Future Work;737
80.6;References;737
81;Performance Analysis of Fabricated Buck-Boost MPPT Charge Controller;739
81.1;1 Introduction;739
81.2;2 Experimental Setup;740
81.3;3 Experimental Result;741
81.4;4 Conclusion;745
81.5;References;745
82;Performance Improvement of Cycloconverter Fed Induction Machine Using Shunt Active Power Filter;747
82.1;1 Introduction;747
82.2;2 Input Current of Cycloconverter;748
82.2.1;2.1 Harmonic Analysis of Input Current;749
82.3;3 Harmonic Analysis of Input Current of Cycloconverter Fed Induction Machine;749
82.4;4 Design Shunt Active Power Filter;751
82.4.1;4.1 Voltage Source Converter;751
82.4.2;4.2 Fuzzy Logic Based Controller;752
82.4.3;4.3 Hysteresis Band Current Control Technique;754
82.4.4;4.4 Simulation of Cycloconverter Fed Induction Machine with Shunt Active Power Filter;754
82.5;5 Conclusion;757
82.6;References;758
83;Comparative Analysis of Speaker Recognition System Based on Voice Activity Detection Technique, MFCC and PLP Features;759
83.1;1 Introduction;759
83.2;2 Methodology;760
83.2.1;2.1 Voice Activity Detection (VAD);761
83.2.2;2.2 MFCC;762
83.2.3;2.3 Vector Quantization;762
83.2.4;2.4 Perceptual Linear Predictive (PLP);763
83.2.5;2.5 Database;763
83.3;3 Results and Discussion;764
83.4;4 Conclusions;765
83.5;References;765
84;Nonintrusive Load Monitoring: Making Smart Meters Smarter;766
84.1;1 Introduction;766
84.1.1;1.1 Need for NILM in Smart Meters;766
84.2;2 Working of NILM and Challenges with It;767
84.2.1;2.1 Data Acquisition;768
84.3;3 Proposal;768
84.3.1;3.1 Security Feature to Safeguard Consumer as Well as Appliance;768
84.3.2;3.2 NILM to Predict Appliance Health;770
84.4;4 Conclusion;770
85;Stabilization of Chaotic Systems Using Robust Optimal Controller;772
85.1;1 Introduction;772
85.2;2 Problem Statement;773
85.3;3 Optimal Controller Design;774
85.4;4 Design of Sliding Mode Controller;775
85.5;5 Simulation Results;777
85.6;6 Conclusion;779
85.7;References;779
86;Jaya Algorithm Based Optimal Allocation of Distributed Energy Resources;781
86.1;1 Introduction;781
86.2;2 Problem Description;783
86.2.1;2.1 Boundary Limit of Node Voltage;783
86.2.2;2.2 Power Balance;784
86.2.3;2.3 Distribution Thermal Limit;784
86.2.4;2.4 DERs Generation;784
86.3;3 Description of the Jaya Algorithm;784
86.4;4 Simulation Results;786
86.4.1;4.1 Test System 1:33 Bus Radial Distribution Network;787
86.4.2;4.2 Test System 2: 69 Bus Radial Distribution Network;787
86.5;5 Conclusion;789
86.6;References;789
87;Bayesian Game Model: Demand Side Management for Residential Consumers with Electric Vehicles;791
87.1;1 Introduction;791
87.2;2 System Model;792
87.2.1;2.1 Energy Consumption Cost Model;793
87.2.2;2.2 Payoff Model for EV’s;794
87.3;3 Bayesian Game for Household Consumers;795
87.4;4 Simulation Results;796
87.5;5 Conclusion;798
87.6;References;798
88;Classification of Power System Disturbances Using Support Vector Machine in FPGA;800
88.1;1 Introduction;800
88.2;2 Support Vector Machine;801
88.2.1;2.1 Linear SVM;801
88.2.2;2.2 Nonlinear SVM;802
88.3;3 Power System Transient;804
88.4;4 SVM Implementation;805
88.4.1;4.1 Software Simulation of SVM in MATLAB;805
88.4.2;4.2 Hardware Co-simulation of SVM in FPGA;806
88.5;5 Simulation Result;808
88.6;6 Conclusion;809
88.7;References;809
89;Designing a Smart System for Air Quality Monitoring and Air Purification;811
89.1;1 Introduction;811
89.2;2 Filters and Sensors;812
89.2.1;2.1 Filters;812
89.2.2;2.2 Comparison of Various Filters Used in the Air Purifiers;814
89.2.3;2.3 Sensors;814
89.3;3 Proposed Model;815
89.4;4 Results;816
89.5;5 Conclusion;816
89.6;6 Future Scope;817
89.7;References;817
90;Activation Map Networks with Deep Graphical Model for Semantic Segmentation;819
90.1;1 Introduction;820
90.2;2 Context Deep CRFs;820
90.3;3 Pairwise Potential Functions;821
90.4;4 Prognostic Process;822
90.5;5 Prognostic Consummation Phase;823
90.6;6 Practical Experiments with Validation Set on Matlab Contextual Modeling;823
90.7;7 Conclusion;823
90.8;References;825
91;Grey Wolf Optimized PI Controller for Hybrid Power System Using SMES;827
91.1;1 Introduction;827
91.2;2 Hybrid Power System;828
91.2.1;2.1 Mathematical Modelling of HPS;828
91.3;3 Grey Wolf Optimization;830
91.4;4 Simulation Results and Analysis;831
91.5;5 Conclusion;834
91.6;References;835
92;JAYA-Evaluated Frequency Control Design for Hydroelectric Power System Using RFB and UPFC;836
92.1;1 Introduction;837
92.2;2 Studied Model;838
92.3;3 JAYA-Optimized LFC Designs;838
92.4;4 Result Analysis;841
92.5;5 Conclusion;842
92.6;References;844
93;A Human Face-Shaped Microstrip Patch Antenna for Ultra-Wideband Applications;845
93.1;1 Introduction;845
93.2;2 Antenna Geometry;846
93.3;3 Simulation Results;847
93.4;4 Conclusion;849
93.5;References;851
94;Scheduling Energy Storage to Provide Balancing During Line Contingency at High Wind Penetration;853
94.1;1 Introduction;855
94.2;2 Problem Formulation;856
94.2.1;2.1 Objective Function;856
94.2.2;2.2 Operating Constraints;856
94.2.3;2.3 Wind Generation Constraints;857
94.2.4;2.4 Storage Constraints;857
94.2.5;2.5 Power Balance;858
94.3;3 Data and Result Analysis;858
94.3.1;3.1 Data;858
94.3.2;3.2 Result Analysis;858
94.4;4 Conclusion;861
94.5;References;861
95;Multilevel Inverter Topologies in Renewable Energy Applications;863
95.1;1 Introduction;864
95.2;2 Classical MLI Topologies;865
95.2.1;2.1 Neutral Point Clamped MLI (NPC MLI);865
95.2.2;2.2 Flying Capacitor MLI (FC MLI);866
95.2.3;2.3 Cascaded H-Bridge MLI (CHB MLI);867
95.3;3 RCC Topologies for LV Applications;867
95.3.1;3.1 Developed Cascaded MLI (DC MLI);867
95.3.2;3.2 Cascaded Sub-multilevel Inverter (CSMLI);867
95.3.3;3.3 Multilevel DC-Link Inverter (MLDCLI);869
95.4;4 MLIs in Renewable Energy Applications;869
95.4.1;4.1 Photovoltaic Systems;869
95.4.2;4.2 Wind Energy Conversion System (WECS);870
95.4.3;4.3 Battery Storage Energy Systems (BSES);870
95.5;5 Conclusion;871
95.6;References;871
96;A Review on Demand Side Management Forecasting Models for Smart Grid;875
96.1;1 Introduction;875
96.2;2 Load Forecasting;877
96.2.1;2.1 Traditional Forecasting Method;877
96.2.2;2.2 Modern Forecasting Method;879
96.3;3 Comparative Study of Forecasting Techniques;880
96.4;4 Challenges and Conclusion;881
96.5;References;881
97;Detection of Suspicious Activity in ATM Booth;883
97.1;1 Introduction;883
97.1.1;1.1 Video Surveillance;884
97.1.2;1.2 Overview;884
97.2;2 Related Work;884
97.3;3 Background;885
97.3.1;3.1 Automated Teller Machine;885
97.3.2;3.2 Suspicious Activities in ATM Booth;886
97.4;4 Multiple Object Detection;886
97.4.1;4.1 Viola–Jones Algorithm;886
97.4.2;4.2 Approach Used for Multiple Person Detection;888
97.5;5 Helmet Detection;888
97.5.1;5.1 Circle Hough Transformation;888
97.5.2;5.2 Approach Used for Helmet Detection;891
97.6;6 Results Analysis;891
97.7;7 Conclusion;895
97.8;References;896
98;Mitigation of Power Quality for Wind Energy Using Transmission Line Based on D-STATCOM;898
98.1;1 Introduction;898
98.2;2 Proposed Work;899
98.3;3 Result and Discussion;900
98.4;4 Conclusion;904
98.5;References;905
99;Performance Evaluation of Solar Power Plant;907
99.1;1 Introduction;907
99.2;2 Methodology and Input Parameters;908
99.3;3 Result and Discussion;909
99.4;4 Conclusion;909
99.5;References;911
100;GWO Based PID Controller Optimization for Robotic Manipulator;913
100.1;1 Introduction;913
100.2;2 Modeling of Robotic Manipulator;914
100.3;3 Trajectory for Manipulator;916
100.4;4 PID Controller;916
100.5;5 Optimization Technique;917
100.5.1;5.1 GWO Optimization;917
100.6;6 Simulation and Result Analysis;918
100.7;7 Conclusion;920
100.8;References;921
101;A 26 W Power Supply Based on Luo Converter with Improved Power Factor and Total Harmonic Distortion;922
101.1;1 Introduction;922
101.2;2 Proposed Model: A Power Factor Corrected (PFC) Power Supply Based on Luo Converter;923
101.3;3 Components Selection of Power Supply;924
101.4;4 System Loop Gain Analysis;924
101.5;5 Model Stability Without Controller in Feedback;926
101.6;6 Controller Design and Analysis of Stability System with Compensation Network;926
101.6.1;6.1 Proportional Integral (PI) Controller;927
101.6.2;6.2 Compensator’s Component Design;928
101.6.3;6.3 Model with Proposed Compensated Network: Stability Analysis;928
101.7;7 Simulated Circuit Diagram and Analysis;929
101.8;8 Results Analysis;929
101.9;9 Conclusions;931
101.10;References;931
102;Optimal Strategic Bidding Using Intelligent Gravitational Search Algorithm for Profit Maximization of Power Suppliers in an Emerging Power Market;932
102.1;1 Introduction;932
102.2;2 Problem Formulation;934
102.3;3 Intelligent GSA;935
102.3.1;3.1 Opposition Phenomenon in GSA;936
102.3.2;3.2 Update Mode of Gravity Constant;936
102.4;4 Results and Discussion;936
102.5;5 Conclusion;939
102.6;References;939
103;Synchrophasor Measurements Assisted Naïve Bayes Classification Based Real-Time Transient Stability Prediction of Power System;941
103.1;1 Introduction;941
103.2;2 Naïve Bayes Classifier;942
103.3;3 Proposed Methodology;943
103.3.1;3.1 Optimal PMU Placement Formulation;944
103.3.2;3.2 Data Generation;944
103.3.3;3.3 Feature Selection and Target Assignment;944
103.3.4;3.4 Training, Testing and New Data;945
103.3.5;3.5 Proposed Synchrophasor Measurement Assisted Naïve Bayes Classifier;945
103.4;4 Simulation and Results;945
103.4.1;4.1 Optimal PMU Placement;945
103.4.2;4.2 PMU-Naïve Bayes Based Real-Time Transient Stability Prediction;946
103.5;5 Conclusion;947
103.6;References;947
104;Device Modeling and Characteristics of Solution Processed Perovskite Solar Cell at Ambient Conditions;949
104.1;1 Introduction;949
104.2;2 Methodology;951
104.2.1;2.1 Materials;951
104.2.2;2.2 Preparation of Layers;952
104.2.3;2.3 Device Fabrication;952
104.3;3 Characterization;954
104.3.1;3.1 I–V Measurement;954
104.3.2;3.2 UV-Visible Analysis;954
104.4;4 Summary;955
104.5;References;956
105;Control and Remote Sensing of an Irrigation System Using ZigBee Wireless Network;957
105.1;1 Introduction;958
105.2;2 Materials and Methods;959
105.2.1;2.1 Conceptual System Design;959
105.2.2;2.2 Sensor-Based In-field Station;960
105.2.3;2.3 Irrigation Control Station;961
105.2.4;2.4 Base Station;962
105.2.5;2.5 Graphical User Interface (Gui);962
105.2.6;2.6 Mail Transfer;964
105.3;3 Application and Observations;964
105.4;4 Limitation;965
105.5;5 Conclusion and Future Work;965
105.6;References;966
106;Analysis and Classification of Maximum Power Point Tracking (MPPT) Techniques: A Review;967
106.1;1 Introduction;967
106.2;2 Introduction to MPPT Techniques;968
106.3;3 Types of MPPT Techniques;969
106.3.1;3.1 Conventional Methods;969
106.3.2;3.2 Soft Computing Methods;972
106.3.3;3.3 Comparative Study;974
106.4;4 Conclusion;975
106.5;References;975
107;A Study and Comprehensive Overview of Inverter Topologies for Grid-Connected Photovoltaic Systems (PVS);977
107.1;1 Introduction;978
107.2;2 Evolution of Grid-Connected Inverter Topologies for PVS;978
107.2.1;2.1 Centralized Inverters;981
107.2.2;2.2 String Inverters and AC-Modules;981
107.2.3;2.3 Multi-string Inverters and Cascaded Inverters;982
107.3;3 Power Processing Stages-Based Inverters;982
107.3.1;3.1 SSI: Single-Stage Inverter;982
107.3.2;3.2 MSI: Multiple-Stage Inverter;983
107.4;4 Conclusion;983
107.5;References;984
108;IOT Based Smart Writer;986
108.1;1 Technical Details of the Paper;987
108.1.1;1.1 Origin of Idea;987
108.1.2;1.2 Definition of the Problem;987
108.2;2 Objectives;987
108.2.1;2.1 Printing;987
108.2.2;2.2 Android/IOS Development;988
108.2.3;2.3 App to Machine Communication;988
108.2.4;2.4 Speech to Text Conversion;988
108.2.5;2.5 Signature Printing and Encryption;988
108.3;3 Workplan;988
108.3.1;3.1 Literature Survey;988
108.3.2;3.2 Writer Installation;988
108.3.3;3.3 Arduino Programming;989
108.3.4;3.4 Mobile App Development;989
108.3.5;3.5 Paper Representation;989
108.4;4 Methodology;989
108.5;5 Organization of the Work Elements;990
108.6;6 Time Schedule Chart;991
108.7;7 Technologies Used;991
108.8;8 Conclusion;991
108.9;References;991
109;Design and Implementation of Arduino Based Control System for Power Management of Household Utilities;992
109.1;1 Introduction;992
109.2;2 Environmental Impact of Conventional Energy Resources;993
109.3;3 Solar Power and Scope in India;993
109.4;4 Experimental Setup;994
109.5;5 Results and Discussion;995
109.6;6 Conclusion;998
109.7;References;998
110;Interfacing Python with DIgSILENT Power Factory: Automation of Tasks;999
110.1;1 Python Interpreter;999
110.2;2 Python Power Factory Module;1000
110.3;3 Python Power Factory Module Usage;1000
110.4;4 Conclusion;1002
110.5;References;1003
111;Recent Development in Perovskite Solar Cell Based on Planar Structures;1004
111.1;1 Introduction;1004
111.2;2 Planar Structure;1006
111.3;3 The Inverted Planar Structure;1007
111.4;4 Summary;1009
111.5;References;1009


Akhtar Kalam has been at Victoria University (VU) since 1985. He is a former Deputy Dean of the Faculty of Health, Engineering and Science and Head of Engineering of the College of Engineering and Science. Currently, he is the Head of External Engagement. He is also the current Chair of the Academic Board in the Engineering Institute of Technology, Perth, Australia, and the Editor in Chief of Australian Journal of Electrical & Electronics Engineering. Also, he has a Distinguished Professorship position at the University of New South Wales, Sydney, Australia, three Indian and five Malaysian universities. Professor Kalam has conducted research, provided industrial consultancy and published more than 542 publications on his area of expertise. He has written 26-plus books in the area. More than 35 PhD students have graduated under his supervision He received his B.Sc. and B.Sc. Engineering degrees from University of Calcutta and the Aligarh Muslim University, India. He completed his MS and Ph.D degrees at the University of Oklahoma, USA and the University of Bath, UK respectively. He provides consultancy for major electrical utilities, manufacturers and other industry bodies in his field of expertise. He is a Fellow of EA, IET, AIE, a life member of IEEE and a member CIGRE AP B5 Study Committee.

Khaleequr Rehman Niazi has over 29 years of teaching and research experience. Currently he is a Professor in the Department of Electrical Engineering and Dean of Academic affairs of MNIT Jaipur.  He has vast administrative experience. He has worked as Head, Electrical Engineering Department, Advisor- Estate, Chief Vigilance Officer, Chairman- Senate Undergraduate committee, Member Board of Governors of MNIT, Professor In-Charge - Training & Placement, Nodal Officer-TEQIP, etc at MNIT, Jaipur. He has published over 200 papers in International journals and conferences. He has also published a book. He has so far supervised 16 Ph.Ds and many PG dissertations and carried out many sponsored R&D projects. He has diversified research interests in the areas of conventional power and renewable energy systems, smart grid, distribution network reconfiguration, flexible AC transmission systems (FACTS), and application of AI and ANN techniques to power systems. He has been visiting professor of Taibah University, Kingdom of Saudi Arabia. He was also nominated by DST India for International Training on “Electrical Power system automation Technology and applications” at Wuhan China. He is presently Associate Editor of RPG IET journal of UK, Senior Member IEEE, USA and life member ISTE, India.

Amit Soni Amit Soni has 18 years of teaching and research experience and is presently working as Professor & Head of Department of Electrical Engineering, Manipal University Jaipur, Jaipur. He has completed PhD (2012) and M. Tech. (2005) in “Power Systems” both from M.N.I.T. Jaipur. He has worked in various administrativecapacities such as Director, RTU affiliated Engineering College, Head, Electrical Department, Coordinator and Chairman for various Academic Committees at both undergraduate and postgraduate levels. He has published more than 50 research papers in repute SCI indexed journals and conferences. He has supervised 3 Ph.Ds and many PG students under his guidance. Currently, he is working on DST SERB funded research project in collaboration with MLSU, Udaipur and NIT Uttarakhand. Students from all levels i.e. UG, PG and Ph.D. are working under his supervision on different areas. He has also published book on “Power System Engineering” for RTU affiliated institutions. Currently, he is working on Solar PV Materials & its applications, Photovoltaics, Renewable Energy Systems and Power System. He is life member of Solar Energy Society of India, Member ISTE, India and IEEE, USA.

Shahbaz Ahmed Siddiqui is Associate Professor and Head in Department of Mechatronics Engineering, Manipal University, Jaipur India. He completed his Ph.D and M. Tech. from M.N.I.T., Jaipur in Power Systems. He is teaching undergraduate and post graduate courses and his areas of research interests include artificial intelligence applications to power system operation and control, operation and control of microgrid, and synthesization and fabrication of solar cells. He has published more than 50 papers in International Journals and Conferences. He is life member of ISTE, India and member of IEEE, USA.

Ankit Mundra is working as Assistant Professor in the Department of Information Technology, Faculty of Engineering, Manipal University Jaipur. He is pursuing PhD from M.N.I.T., Jaipur in Internet of Things. His area of research expertise is Network Security, Wireless Networks, Online Fraud Detection. He has published more than 25 research articles in International Journals and Conferences. He has been the editor of two international books published by Springer Nature.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.