Buch, Englisch, Band 94, 159 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 430 g
Conditional and Unconditional Convergence
Buch, Englisch, Band 94, 159 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 430 g
Reihe: Operator Theory: Advances and Applications
ISBN: 978-3-7643-5401-5
Verlag: Springer
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematik Allgemein
- Mathematik | Informatik Mathematik Topologie Mengentheoretische Topologie
- Mathematik | Informatik Mathematik Mathematische Analysis Harmonische Analysis, Fourier-Mathematik
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik Mathematik Geometrie
Weitere Infos & Material
Notations.- 1. Background Material.- §1. Numerical Series. Riemann’s Theorem.- §2. Main Definitions. Elementary Properties of Vector Series.- §3. Preliminary Material on Rearrangements of Series of Elements of a Banach Space.- 2. Series in a Finite-Dimensional Space.- §1. Steinitz’s Theorem on the Sum Range of a Series.- §2. The Dvoretzky-Hanani Theorem on Perfectly Divergent Series.- §3. Pecherskii’s Theorem.- 3. Conditional Convergence in an Infinite-Dimensional Space.- §1. Basic Counterexamples.- §2. A Series Whose Sum Range Consists of Two Points.- §3. Chobanyan’s Theorem.- §4. The Khinchin Inequalities and the Theorem of M. I. Kadets on Conditionally Convergent Series in Lp.- 4. Unconditionally Convergent Series.- §1. The Dvoretzky-Rogers Theorem.- §2. Orlicz’s Theorem on Unconditionally Convergent Series in LpSpaces.- §3. Absolutely Summing Operators. Grothendieck’s Theorem.- 5. Orlicz’s Theorem and the Structure of Finite-Dimensional Subspaces.- §1. Finite Representability.- §2.The space c0, C-Convexity, and Orlicz’s Theorem.- §3. Survey on Results on Type and Cotype.- 6. Some Results from the General Theory of Banach Spaces.- §1. Fréchet Differentiability of Convex Functions.- §2. Dvoretzky’s Theorem.- §3. Basic Sequences.- §4. Some Applications to Conditionally Convergent Series.- 7. Steinitz’s Theorem and B-Convexity.- §1. Conditionally Convergent Series in Spaces with Infratype.- §2. A Technique for Transferring Examples with Nonlinear Sum Range to Arbitrary Infinite-Dimensional Banach Spaces.- §3. Series in Spaces That Are Not B-Convex.- 8. Rearrangements of Series in Topological Vector Spaces.- §1. Weak and Strong Sum Range.- §2. Rearrangements of Series of Functions.- §3. Banaszczyk’s Theorem on Series in Metrizable Nuclear Spaces.- Appendix. The Limit Set of the Riemann Integral Sums of a Vector-Valued Function.- §2. The Example of Nakamura and Amemiya.- §4. Connection with the Weak Topology.- Comments to the Exercises.- References.