Buch, Englisch, Band 374, 242 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 411 g
A Data-driven Subspace Approach
Buch, Englisch, Band 374, 242 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 411 g
Reihe: Lecture Notes in Control and Information Sciences
ISBN: 978-1-84800-232-6
Verlag: Springer
A typical design procedure for model predictive control or control performance monitoring consists of: 1. identification of a parametric or nonparametric model; 2. derivation of the output predictor from the model; 3. design of the control law or calculation of performance indices according to the predictor.
Both design problems need an explicit model form and both require this three-step design procedure. Can this design procedure be simplified? Can an explicit model be avoided? With these questions in mind, the authors eliminate the first and second step of the above design procedure, a “data-driven” approach in the sense that no traditional parametric models are used; hence, the intermediate subspace matrices, which are obtained from the process data and otherwise identified as a first step in the subspace identification methods, are used directly for the designs. Without using an explicit model, the design procedure is simplified and the modelling error caused by parameterization is eliminated.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Statik, Dynamik, Kinetik, Kinematik
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Verfahrenstechnik, Chemieingenieurwesen
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Informationstheorie, Kodierungstheorie
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Überwachungstechnik
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik Mathematik Mathematische Analysis Variationsrechnung
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Informationstheorie, Kodierungstheorie
- Technische Wissenschaften Technik Allgemein Mess- und Automatisierungstechnik
Weitere Infos & Material
I Dynamic Modeling through Subspace Identification.- System Identification: Conventional Approach.- Open-loop Subspace Identification.- Closed-loop Subspace Identification.- Identification of Dynamic Matrix and Noise Model Using Closed-loop Data.- II Predictive Control.- Model Predictive Control: Conventional Approach.- Data-driven Subspace Approach to Predictive Control.- III Control Performance Monitoring.- Control Loop Performance Assessment: Conventional Approach.- State-of-the-art MPC Performance Monitoring.- Subspace Approach to MIMO Feedback Control Performance Assessment.- Prediction Error Approach to Feedback Control Performance Assessment.- Performance Assessment with LQG-benchmark from Closed-loop Data.