K / Rodriguez / Ong | Artificial Intelligence and Knowledge Processing | Buch | 978-3-031-68616-0 | sack.de

Buch, Englisch, Band 2127, 412 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 645 g

Reihe: Communications in Computer and Information Science

K / Rodriguez / Ong

Artificial Intelligence and Knowledge Processing

Third International Conference, AIKP 2023, Hyderabad, India, October 6-8, 2023, Revised Selected Papers

Buch, Englisch, Band 2127, 412 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 645 g

Reihe: Communications in Computer and Information Science

ISBN: 978-3-031-68616-0
Verlag: Springer Nature Switzerland


This book constitutes the Revised Selected Papers of the Third International Conference on Artificial Intelligence and Knowledge Processing, AIKP 2023, held in Hyderabad, India, during October 6–8, 2023.

The 20 full papers and 8 short papers were carefully selected from 118 submissions. The research areas include: Artificial Intelligence and Machine Learning; Deep Learning and Computer Vision; Natural Language Processing; Intelligent Control.

K / Rodriguez / Ong Artificial Intelligence and Knowledge Processing jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Artificial Intelligence and Machine Learning.

.- Dynamic Inventory Management using AI: A Case on Data Robot.

.- Feature Extraction Using Naive Bayes and Logistic Regression for Survival of the COPD Patients.

.- How do Senior Secondary Level Students and their Teacher Perceive Artificial Intelligence and its Implementation? An Exploratory Study. 

.- Anomalous Sound Pattern Detection for Machine Health Monitoring.

.- Performance Evaluation of various Machine Learning Algorithms for Lung Cancer Prediction using Demographic Data.

.- Enhancing Stock Portfolio Optimization Based on a Hybrid Approach using Artificial Bee Colony Optimization and Firefly Optimization.

.- Enhancing Yarn Quality in the Cotton Industry: AI-Based NEP Detection for Improved Manufacturing Processes.

.- Deep Learning and Computer Vision.

.- Breast Cancer Diagnosis from Ultrasonic Image and Histopathology Image Using Deep Learning Approach.

.- Advancing Time Series Forecasting: LSTM Networks with Multiple Attention Mechanisms.

.- Trajectory Tracking and Navigation Model for Autonomous Vehicles Using Reinforcement Learning.

.- Quantum Graph Neural Network-based Protein-ligand Classification.

.- Comparative Analysis on Speech Driven Gesture Generation.

.- Enhancing Deep Learning: Leveraging Skip Connections and Memory Efficiency.

.- Quality-based Decision-Making using Image Processing for Supply Chain Management.

.- Enhancing Endometrial Tumor Detection: Early Diagnosis with Advanced Vision Transformer Architecture.

.- Sweet-Sight: A Deep Convolutional Neural Network Approach for Automatic Categorization of Bengal Sweets.

.- A systematic Review: How Computer Vision is Transforming Agriculture in Economic Growth.

.- Automatic Conversion of Broadcasted Football Match Recordings to its 2D Top View.

.- Measuring the Vehicle-in-Motion, Density and Allocation of Traffic Signal using Transfer Learning.

.- Ensemble Model of VGG16, ResNet50, and DenseNet121 for Human Identification through Gait Features.

.- Natural Language Processing.

.- Performance of Sentiment Analysis APIs on Political Opinion Polling.

.- Summarization of Telugu Text Discourses.

.- Summarizing Student’s Text-only Answer Sheet using SBERT and K-Means Clustering and Evaluating it using Semantic Search.

.- Measuring Business Model Disclosure Quality in Integrated Reports using NLP Techniques.

.- Machine Learning and NLP Approach to Predict Hospitalization upon Adverse Drug Reaction Symptoms of Covid-19 Vaccine Administration.

.- Crowd-Sourced Supervisor for Automatic Invigilation of Online Assessment.

.- Advanced Self-Driving Car Using CNN: Udacity Simulator.

.- Efficient VQE Approach for Accurate Simulations on the Kagome Lattice.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.