Jost | Riemannian Geometry and Geometric Analysis | E-Book | sack.de
E-Book

E-Book, Englisch, 611 Seiten, eBook

Reihe: Universitext

Jost Riemannian Geometry and Geometric Analysis


6th Auflage 2011
ISBN: 978-3-642-21298-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 611 Seiten, eBook

Reihe: Universitext

ISBN: 978-3-642-21298-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This established reference work continues to lead its readers to some of the hottest topics of contemporary mathematical research. The previous edition already introduced and explained the ideas of the parabolic methods that had found a spectacular success in the work of Perelman at the examples of closed geodesics and harmonic forms. It also discussed further examples of geometric variational problems from quantum field theory, another source of profound new ideas and methods in geometry. The 6 th edition includes a systematic treatment of eigenvalues of Riemannian manifolds and several other additions. Also, the entire material has been reorganized in order to improve the coherence of the book. From the reviews: "This book provides a very readable introduction to Riemannian geometry and geometric analysis. ... With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome." MathematicalReviews "...the material ... is self-contained. Each chapter ends with a set of exercises. Most of the paragraphs have a section ‘Perspectives’, written with the aim to place the material in a broader context and explain further results and directions." Zentralblatt MATH
Jost Riemannian Geometry and Geometric Analysis jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


1. Riemannian Manifolds.- 2. Lie Groups and Vector Bundles.- 3. The Laplace Operator and Harmonic Differential Forms.- 4. Connections and Curvature.- 5. Geodesics and Jacobi Fields.- 6. Symmetric Spaces and K¨ahler Manifolds.- 7. Morse Theory and Floer Homology.- 8. Harmonic Maps between Riemannian Manifolds.- 9. Harmonic Maps from Riemann Surfaces.- 10. Variational Problems from Quantum Field Theory.- A. Linear Elliptic Partial Differential Equations.- A.1 Sobolev Spaces.- A.2 Linear Elliptic Equations.- A.3 Linear Parabolic Equations.- B. Fundamental Groups and Covering Spaces.- Bibliography.- Index.


Jürgen Jost is Codirector of the Max Planck Institute for Mathematics in the Sciences in Leipzig, Germany, an Honorary Professor at the Department of Mathematics and Computer Sciences at Leipzig University, and an External Faculty Member of the Santa Fe Institute for the Sciences of Complexity, New Mexico, USA. He is the author of a number of further Springer textbooks including Postmodern Analysis (1997, 2002, 2005), Compact Riemann Surfaces (1997, 2002, 2006), Partial Differential Equations (2002, 2007), Differentialgeometrie und MInimalflächen (1994, 2007, with J. Eschenburg), Dynamical Systems (2005), as well as several research monographs, such as Geometry and Physics (2009), and many publications in scientific journals.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.