Jost | Nonlinear Methods in Riemannian and Kählerian Geometry | Buch | 978-3-0348-7708-4 | sack.de

Buch, Englisch, 156 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 254 g

Jost

Nonlinear Methods in Riemannian and Kählerian Geometry

Delivered at the German Mathematical Society Seminar in Düsseldorf in June, 1986
2. Auflage 1991
ISBN: 978-3-0348-7708-4
Verlag: Birkhäuser

Delivered at the German Mathematical Society Seminar in Düsseldorf in June, 1986

Buch, Englisch, 156 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 254 g

ISBN: 978-3-0348-7708-4
Verlag: Birkhäuser


In this book, I present an expanded version of the contents of my lectures at a Seminar of the DMV (Deutsche Mathematiker Vereinigung) in Düsseldorf, June, 1986. The title "Nonlinear methods in complex geometry" already indicates a combination of techniques from nonlinear partial differential equations and geometric concepts. In older geometric investigations, usually the local aspects attracted more attention than the global ones as differential geometry in its foundations provides approximations of local phenomena through infinitesimal or differential constructions. Here, all equations are linear. If one wants to consider global aspects, however, usually the presence of curvature Ieads to a nonlinearity in the equations. The simplest case is the one of geodesics which are described by a system of second ordernonlinear ODE; their linearizations are the Jacobi fields. More recently, nonlinear PDE played a more and more pro~inent röle in geometry. Let us Iist some of the most important ones: - harmonic maps between Riemannian and Kählerian manifolds - minimal surfaces in Riemannian manifolds - Monge-Ampere equations on Kähler manifolds - Yang-Mills equations in vector bundles over manifolds. While the solution of these equations usually is nontrivial, it can Iead to very signifi cant results in geometry, as solutions provide maps, submanifolds, metrics, or connections which are distinguished by geometric properties in a given context. All these equations are elliptic, but often parabolic equations are used as an auxiliary tool to solve the elliptic ones.

Jost Nonlinear Methods in Riemannian and Kählerian Geometry jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1. Geometric preliminaries.- 2. Some principles of analysis.- 3. The heat flow on manifolds. Existence and uniqueness of harmonic maps into nonpositively curved image manifolds.- 4. The parabolic Yang-Mills equation.- 5. Geometric applications of harmonic maps.- Appendix: Some remarks on notation and terminology.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.