E-Book, Englisch, 552 Seiten
Joseph Modern Time Series Forecasting with Python
1. Auflage 2022
ISBN: 978-1-80323-204-1
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 0 - No protection
Explore industry-ready time series forecasting using modern machine learning and deep learning
E-Book, Englisch, 552 Seiten
ISBN: 978-1-80323-204-1
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 0 - No protection
No detailed description available for "Modern Time Series Forecasting with Python".
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Table of Contents - Introducing Time Series
- Acquiring and Processing Time Series Data
- Analyzing and Visualizing Time Series Data
- Setting a Strong Baseline Forecast
- Time Series Forecasting as Regression
- Feature Engineering for Time Series Forecasting
- Target Transformations for Time Series Forecasting
- Forecasting Time Series with Machine Learning Models
- Ensembling and Stacking
- Global Forecasting Models
- Introduction to Deep Learning
- Building Blocks of Deep Learning for Time Series
- Common Modeling Patterns for Time Series
- Attention and Transformers for Time Series
- Strategies for Global Deep Learning Forecasting Models
- Specialized Deep Learning Architectures for Forecasting
- Multi-Step Forecasting
- Evaluating Forecasts – Forecast Metrics
- Evaluating Forecasts – Validation Strategies




