Joseph | Markov Chain Monte Carlo Methods in Quantum Field Theories | Buch | 978-3-030-46043-3 | sack.de

Buch, Englisch, 126 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 224 g

Reihe: SpringerBriefs in Physics

Joseph

Markov Chain Monte Carlo Methods in Quantum Field Theories

A Modern Primer
1. Auflage 2020
ISBN: 978-3-030-46043-3
Verlag: Springer International Publishing

A Modern Primer

Buch, Englisch, 126 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 224 g

Reihe: SpringerBriefs in Physics

ISBN: 978-3-030-46043-3
Verlag: Springer International Publishing


This primer is a comprehensive collection of analytical and numerical techniques that can be used to extract the non-perturbative physics of quantum field theories. The intriguing connection between Euclidean Quantum Field Theories (QFTs) and statistical mechanics can be used to apply Markov Chain Monte Carlo (MCMC) methods to investigate strongly coupled QFTs. The overwhelming amount of reliable results coming from the field of lattice quantum chromodynamics stands out as an excellent example of MCMC methods in QFTs in action. MCMC methods have revealed the non-perturbative phase structures, symmetry breaking, and bound states of particles in QFTs. The applications also resulted in new outcomes due to cross-fertilization with research areas such as AdS/CFT correspondence in string theory and condensed matter physics.

The book is aimed at advanced undergraduate students and graduate students in physics and applied mathematics, and researchers in MCMC simulations and QFTs. At the end of this book the reader will be able to apply the techniques learned to produce more independent and novel research in the field.


Joseph Markov Chain Monte Carlo Methods in Quantum Field Theories jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Monte Carlo Method for Integration.- Monte Carlo with Importance Sampling.- Markov Chains.- Markov Chain Monte Carlo.- MCMC and Feynman Path Integrals.- Reliability of Simulations.- Hybrid (Hamiltonian) Monte Carlo.- MCMC and Quantum Field Theories on a Lattice.- Machine Learning and Quantum Field Theories.- C++ Programs.


Anosh Joseph is an Assistant Professor of Physics at the Indian Institute of Science Education and Research (IISER) Mohali, India. A graduate of Indian Institute of Technology (IIT) Madras, India, he obtained his PhD at Syracuse University, USA, in 2011. Since then, he has held post-doctoral Research Associate positions at the Los Alamos National Laboratory (LANL), USA; Deutsches Elektronen-Synchrotron (DESY), Germany; Department of Applied Mathematics and Theoretical Physics (DAMTP) at the University of Cambridge, UK; and the International Centre for Theoretical Sciences (ICTS) of the Tata Institute of Fundamental Research (TIFR), India.

As theoretical and computational physicist his research explores ideas to solve problems in strongly coupled quantum field theories, including Quantum Chromodynamics (QCD), supersymmetric field theories, and quantum field theories with complex actions. He has explored various non-perturbative phenomena occurring in field theories, such as phase transitions, bound states of elementary particles, and symmetry breaking using analytical and numerical methods.

He has published numerous peer-reviewed journal articles on lattice quantum field theory, supersymmetric field theory, complex Langevin dynamics, and non-commutative field theory.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.