E-Book, Englisch, Band 89, 630 Seiten, eBook
Reihe: Nato Science Series D
Jordan Learning in Graphical Models
Erscheinungsjahr 2012
ISBN: 978-94-011-5014-9
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 89, 630 Seiten, eBook
Reihe: Nato Science Series D
ISBN: 978-94-011-5014-9
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Preface.- I: Inference.- to Inference for Bayesian Networks.- Advanced Inference in Bayesian Networks.- Inference in Bayesian Networks using Nested Junction Trees.- Bucket Elimination: A Unifying Framework for Probabilistic Inference.- An Introduction to Variational Methods for Graphical Models.- Improving the Mean Field Approximation via the Use of Mixture Distributions.- to Monte Carlo Methods.- Suppressing Random Walks in Markov Chain Monte Carlo using Ordered Overrelaxation.- II: Independence.- Chain Graphs and Symmetric Associations.- The Multiinformation Function as a Tool for Measuring Stochastic Dependence.- III: Foundations for Learning.- A Tutorial on Learning with Bayesian Networks.- A View of the EM Algorithm that Justifies Incremental, Sparse, and Other Variants.- IV: Learning from Data.- Latent Variable Models.- Stochastic Algorithms for Exploratory Data Analysis: Data Clustering and Data Visualization.- Learning Bayesian Networks with Local Structure.- Asymptotic Model Selection for Directed Networks with Hidden Variables.- A Hierarchical Community of Experts.- An Information-Theoretic Analysis of Hard and Soft Assignment Methods for Clustering.- Learning Hybrid Bayesian Networks from Data.- A Mean Field Learning Algorithm for Unsupervised Neural Networks.- Edge Exclusion Tests for Graphical Gaussian Models.- Hepatitis B: A Case Study in MCMC.- Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and Beyond.