E-Book, Englisch, 333 Seiten, eBook
Jonoska / Savchuk Developments in Language Theory
1. Auflage 2020
ISBN: 978-3-030-48516-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
24th International Conference, DLT 2020, Tampa, FL, USA, May 11–15, 2020, Proceedings
E-Book, Englisch, 333 Seiten, eBook
Reihe: Theoretical Computer Science and General Issues
ISBN: 978-3-030-48516-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Equational Theories of Scattered and Countable Series-parallel Posets.- Scattered Factor-Universality of Words.- On Normalish Subgroups of the R. Thompson’s Groups.- Computing the Shortest String and the Edit-Distance for Parsing Expression Languages.- An Approach to the Herzog-Schonheim Conjecture Using Automata.- On the Fine Grained Complexity of Finite Automata Non-Emptiness of Intersection.- The State Complexity of Lexicographically Smallest Words and Computing Successors.- Reconstructing Words from Right-Bounded-Block Words.- A Study of a Simple Class of Modifiers : Product Modifiers.- Operations on Permutation Automata.- Space Complexity of Stack Automata Models.- Descriptional Complexity of Semi-Simple Splicing Systems.- On the Degeneracy of Random Expressions Specified by Systems of Combinatorial Equations.- Dynamics of Cellular Automata on Beta-Shifts and Direct Topological Factorizations.- Avoidability of Additive Cubes over Alphabets of Four Numbers.- Equivalence of Linear Tree Transducers with Output in the Free Group.- On the Balancedness of Tree-to-word Transducers.- On Tree Substitution Grammars.- Sublinear-Time Language Recognition and Decision by One-Dimensional Cellular Automata.- Complexity of Searching for 2 by 2 Submatrices in Boolean Matrices.- Avoiding 5/4-powers on the Alphabet of Nonnegative Integers (Extended Abstract).- Transition Property for a -Power Free Languages with a = 2 and k = 3 Letters.- Context-Freeness of Word-MIX Languages.- The Characterization of the Minimal Paths in the Christo?el Tree According to a Second-order Balancedness.