E-Book, Englisch, 760 Seiten, E-Book
Johnson Probability and Statistics for Computer Science
1. Auflage 2011
ISBN: 978-1-118-16596-6
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 760 Seiten, E-Book
ISBN: 978-1-118-16596-6
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Comprehensive and thorough development of both probability andstatistics for serious computer scientists; goal-oriented: "topresent the mathematical analysis underlying probabilityresults"
Special emphases on simulation and discrete decision theory
Mathematically-rich, but self-contained text, at a gentlepace
Review of calculus and linear algebra in an appendix
Mathematical interludes (in each chapter) which examinemathematical techniques in the context of probabilistic orstatistical importance
Numerous section exercises, summaries, historical notes, andFurther Readings for reinforcement of content
Autoren/Hrsg.
Weitere Infos & Material
Preface.
1. Combinatorics and Probability.
1.1 Combinatorics.
1.2 Summations.
1.3 Probability spaces and random variables.
1.4 Conditional probability.
1.5 Joint distributions.
1.6 Summary.
2. Discrete Distributions.
2.1 The Bernoulli and binomial distributions.
2.2 Power series.
2.3 Geometric and negative binomial forms.
2.4 The Poisson distribution.
2.5 The hypergeometric distribution.
2.6 Summary.
3. Simulation.
3.1 Random number generation.
3.2 Inverse transforms and rejection filters.
3.3 Client-server systems.
3.4 Markov chains.
3.5 Summary.
4. Discrete Decision Theory.
4.1 Decision methods without samples.
4.2 Statistics and their properties.
4.3 Sufficient statistics.
4.4 Hypothesis testing.
4.5 Summary.
5. Real Line-Probability.
5.1 One-dimensional real distributions.
5.2 Joint random variables.
5.3 Differentiable distributions.
5.4 Summary.
6. Continuous Distributions.
6.1 The normal distributions.
6.2 Limit theorems.
6.3 Gamma and beta distributions.
6.4 The X² and related distributions.
6.5 Computer simulations.
6.6 Summary.
7. Parameter Estimation.
7.1 Bias, consistency, and efficiency.
7.2 Normal inference.
7.3 Sums of squares.
7.4 Analysis of variance.
7.5 Linear regression.
7.6 Summary.
A. Analytical Tools.
B. Statistical Tables.
Bibliography.
Index.




