Buch, Englisch, 426 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 834 g
ISBN: 978-3-031-32878-7
Verlag: Springer International Publishing
This book provides a conceptual understanding of deep learning algorithms. The book consists of the four parts: foundations, deep machine learning, deep neural networks, and textual deep learning. The first part provides traditional supervised learning, traditional unsupervised learning, and ensemble learning, as the preparation for studying deep learning algorithms. The second part deals with modification of existing machine learning algorithms into deep learning algorithms. The book’s third part deals with deep neural networks, such as Multiple Perceptron, Recurrent Networks, Restricted Boltzmann Machine, and Convolutionary Neural Networks. The last part provides deep learning techniques that are specialized for text mining tasks. The book is relevant for researchers, academics, students, and professionals in machine learning.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Neuronale Netzwerke
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Mustererkennung, Biometrik
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik
Weitere Infos & Material
Introduction.- Part I. Foundation.- Supervised Learning.- Unsupervised Learning.- Ensemble Learning.- Part II. Deep Machine Learning.- Deep K Nearest Neighbor.- Deep Probabilistic Learning.- Deep Decision Tree.- Deep SVM.- Part III. Deep Neural Networks.- Multiple Layer Perceptron.- Recurrent Networks.- Restricted Boltzmann Machine.- Convolutionary Neural Networks.- Part IV. Textual Deep Learning.- Index Expansion.- Text Summarization.- Textual Deep Operations.- Convolutionary Text Classifier.- Conclusion.